479 research outputs found

    Effect of angular inflow on the vibratory response of a counter-rotating propeller

    Get PDF
    This report presents the results of a propeller vibratory stress survey on the Fairey Gannet aircraft aimed at giving an assessment of the difference in vibratory response between single and counter-rotating propeller operation in angular inflow. The survey showed that counter-rotating operation of the propeller had the effect of increasing the IP response of the rear propeller by approximately 25 percent over comparable single-rotation operation while counter-rotating operation did not significantly influence the IP response of the front propeller

    SR-7A aeroelastic model design report

    Get PDF
    A scale model was designed to simulate the aeroelastic characteristics and performance of the 2.74 meter (9 ft.) diameter SR-7L blade. The procedures used in this model blade design are discussed. Included in this synopsis is background information concerning scaling parameters and an explanation of manufacturing limitations. A description of the final composite model blade, made of titanium, fiberglass, and graphite, is provided. Analytical methods for determining the blade stresses, natural frequencies and mode shapes, and stability are discussed at length

    Dear Little Red Ball

    Get PDF

    The Dangers of Fast Fashion: A Health and Environmental Analysis

    Get PDF
    The purpose of this thesis is to explore the alternatives for fast fashion, the global interdependence between areas of production and areas of consumption for fast fashion, and the long-term health and environmental risks associated with fast fashion production and consumption. This paper aims to discover what health effects are proven to be associated with fast fashion production, the causes of health effects, and the steps which manufacturers, shoppers, fashion companies, and those producing the clothing can take to better the fast fashion interdependency and operations. This study will first delve into the global interdependencies of fast fashion and the structures that are in place, mainly from an economic standpoint. It will then describe the methods used for fast fashion and discuss the various processes necessary for clothing production and sales to high clothing demand areas. It will then describe the methods used for fast fashion and discuss the various necessary clothing production and sales processes to high clothing demand areas. Health harms and the threats globalization pose will be compared. Relevant health data for illnesses and diseases related to fast fashion production will be presented, followed by environmental studies and their impact on human health. Lastly, an alternative and prototype proposal will be explored to increase awareness among consumers with psychological consideration for its effectivenes

    Large-scale Advanced Prop-fan (LAP) static rotor test report

    Get PDF
    Discussed is Static Rotor Testing of the SR-7L Large Scale Advanced Prop-Fan (LAP). The LAP is an advanced 9 foot diameter, 8 bladed propeller designed and built by Hamilton Standard under contract to the NASA Lewis Research Center. The Prop-Fan employs thin swept blades to provide efficient propulsion at flight speeds up to Mach .85. Static Testing was conducted on a 10,000 HP whirl rig at Wright Patterson Air Force Base. The test objectives were to investigate the Prop-Fan static aerodynamic and structural dynamic performance, determine the blade steady state stressers and deflections and to measure steady and unsteady pressures on the SR-7L blade surface. The measured performance of the LAP correlated well with analytical predictions at blade pitch angles below 30 deg. A stall buffet phenomenon was observed at blade pitch angles above 30 deg. This phenomenon manifested itself by elevated blade vibratory stress levels and lower than expected thrust produced and power absorbed by the Prop-Fan for a given speed and blade angle

    Large-Scale Advanced Prop-Fan (LAP) blade design

    Get PDF
    This report covers the design analysis of a very thin, highly swept, propeller blade to be used in the Large-Scale Advanced Prop-Fan (LAP) test program. The report includes: design requirements and goals, a description of the blade configuration which meets requirements, a description of the analytical methods utilized/developed to demonstrate compliance with the requirements, and the results of these analyses. The methods described include: finite element modeling, predicted aerodynamic loads and their application to the blade, steady state and vibratory response analyses, blade resonant frequencies and mode shapes, bird impact analysis, and predictions of stalled and unstalled flutter phenomena. Summarized results include deflections, retention loads, stress/strength comparisons, foreign object damage resistance, resonant frequencies and critical speed margins, resonant vibratory mode shapes, calculated boundaries of stalled and unstalled flutter, and aerodynamic and acoustic performance calculations

    Unstalled flutter stability predictions and comparisons to test data for a composite prop-fan model

    Get PDF
    The aeroelastic stability analyses for three graphite/epoxy composite Prop-Fan designs and post-test stability analysis for one of the designs, the SR-3C-X2 are presented. It was shown that Prop-Fan stability can be effectively analyzed using the F203 modal aeroelastic stability analysis developed at Hamilton Standard and that first mode torsion-bending coupling has a direct effect on blade stability. Positive first mode torsion-bending coupling is a destabilizing factor and the minimization of this parameter will increase Prop-Fan stability. It was also shown that Prop-Fan stability analysis using F203 is sensitive to the blade modal data used as input. Calculated blade modal properties varied significantly with the structural analysis used, and these variations are reflected in the F203 calculations

    Mini-Review: Assessing the Potential Impact of Microneedle Technologies on Home Healthcare Applications

    Get PDF
    The increasing devolution of healthcare towards community care has meant that the management of many conditions is conducted within the home either by community nurses or by the patients themselves. The administration of medicines within home healthcare scenarios can however be problematic—especially when considering the delivery of medicines through injection. The possibility of needlestick injury (NSI) has become an ever-present hazard within healthcare settings, with a significant proportion of percutaneous injuries occurring during the handling and disposal of the needle. The emergence of transdermal microneedle systems, however, offers a potentially revolutionary advance and could dramatically improve safety—particularly within home healthcare where there are mounting concerns over the use and disposal of sharps. A mini-review of the advantages proffered by microneedle drug delivery technologies is presented and the potential impact on delivery of medicines within the home is critically appraised

    Analysis and test evaluation of the dynamic response and stability of three advanced turboprop models

    Get PDF
    Results of dynamic response and stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan, advanced turboprop, are presented. Measurements of dynamic response were made with the rotors mounted on an isolated nacelle, with varying tilt for nonuniform inflow. One model was also tested using a semi-span wing and fuselage configuration for response to realistic aircraft inflow. Stability tests were performed using tunnel turbulence or a nitrogen jet for excitation. Measurements are compared with predictions made using beam analysis methods for the model with straight blades, and finite element analysis methods for the models with swept blades. Correlations between measured and predicted rotating blade natural frequencies for all the models are very good. The IP dynamic response of the straight blade model is reasonably well predicted. The IP response of the swept blades is underpredicted and the wing induced response of the straight blade is overpredicted. Two models did not flutter, as predicted. One swept blade model encountered an instability at a higher RPM than predicted, showing predictions to be conservative

    Large scale prop-fan structural design study. Volume 1: Initial concepts

    Get PDF
    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 1 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described in Volume 2
    • …
    corecore