5 research outputs found

    A Rat Model of Acute Respiratory Distress Silymarin's Antiinflamatory and Antioxidant Effect

    Get PDF
    Objective: In this study, it was aimed to evaluate the anti-inflammatory and antioxidative effects of Silymarin in rats in whom artificial acute pulmonary damage was provided with caecal ligation-perforation method. Material and Method: Forty-six rats were randomized to sham (n=14), control (n=16), silymarin (n=16) groups. Each group had early and late subgroups. Silimarin was administered in the silimarin group and saline was administerd in control and sham groups. Artificial acute pulmonary damage associated with sepsis was provided with caecal ligation-perforation method in control and silimarin groups. Rats in the early subgroup Were terminated at the end of the 12th hour and threats in the late group were followed-up. Serum and bronchoalveolar lavage fluid (BAL) tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6; lung tissue malondialdehyde (MDA) and glutathione (GSH) levels; lung histopathologic examination; and lung wet-to-dry (w/d) weight ratio measurements were used to compare and evaluate the severity of lung injury between the groups. Results: Mortality rates for silymarin and control groups were 62.5% and 12.5%, respectively (log-rank p=0.0506). Compared with the silymarin group, the control group exhibited significantly more severe lung injury, as indicated by higher mean values for serum and BAL TNF-alpha, IL-1beta and IL-6 (p<0.05 for all measurements), total lung histopathologic injury score (p=0.001), w/d (p=0.019) and lung-tissue MDA (p=0.011) levels. Lung tissue GSH levels were significantly higher in silymarin group than control group (p=0.001). Conclusion: Silymarin reduces the severity of sepsis induced-acute lung injury and may also improve survival in a cecal ligation and perforation rat model. These beneficial effects of this agent are probably due to its inhibitory effects on inflammatory process and oxidative injury

    DETERMINATION OF THE EFFECTS OF FULVIC ACID AND IRON OXIDE ON Fe(II) AND Mn(II) REMOVAL IN A SUBMERGED MEMBRANE USING LEAST SQUARES REGRESSION

    No full text
    The aim of this study is to assess the effects of fulvic acid and iron oxide on the Fe2+ and Mn2+ removal by an aerated-submerged membrane system. To construct empirical models for the relationship, polynomial regression method is applied. Ultrafiltration hollow fiber membrane module is submerged into aeration tank. The pressure changes in the membrane system are continuously monitored by means of pressure gauge. Dissolved organic carbon, UV254, iron and manganese concentrations are measured in the raw, unfiltered and filtered waters. While iron oxide's presence increases the removal efficiency of Fe2+ and Mn2+, high concentration of fulvic acid affects adversely. The relationship between these contaminants and membrane fouling is investigated. Also, in order to model the relationship, regression analysis using least squares (LS) approximation method is performed. This method is based on a polynomial of degree n to compute the best approximation to data. Mathematical models are evaluated and compared to identify an adequate model to represent the flux data collected with different ingredients. The results obtained by LS show that the method is feasible

    Hydraulic conductivity and removal rate of compacted clays permeated with landfill leachate

    No full text
    Compacted clay soils are widely used as a barrier to protect environment from leachate migration. The suitability of clay soil for liner material, depends on resistibility to increase in hydraulic conductivity and contaminant transport. In this article, the influence of compaction energy and permeated leachate properties on the hydraulic conductivity were investigated. Natural attenuation capacities of clays compacted both standard and modified compaction methods were also evaluated. With this purpose, a series of laboratory tests were conducted with soil and real leachate samples obtained from Sile-Komurcuoda Organized Landfill Site. DI and real leachate samples were percolated through the laboratory-scale column reactors that were filled with compacted clay samples prepared according to Standard and Modified Proctor method. During percolation, the hydraulic conductivity and natural attenuation capacity of the clay liner were determined by hydraulic conductivity calculation and chemical oxygen demand (COD), suspenden solids (SS), total Kjeldahl nitrogen (TKN), total phosphorus (TP) monitoring, respectively. According to the hydraulic conductivity measurements using leachate, it is shown that hydraulic conductivity decreased in both compacted clay prepared by Standard and Modified Proctor methods, possibly associated with biological and chemical clogging mechanisms. It is thought that clogging formed due to biofilm growth and/or suspended solids accumulation between the particles of the clay soil. When the variations of the COD, SS, TKN, and TP were examined, it was observed that the removal efficiency of the clay compacted by the modified compaction method was greater than the one compacted by the standard compaction method, especially for SS

    Effect of Topical Platelet-Rich Plasma on Burn Healing After Partial-Thickness Burn Injury

    Get PDF
    Background: To investigate the effects of platelet-rich plasma on tissue maturation and burn healing in an experimental partial-thickness burn injury model. Material/Methods: Thirty Wistar albino rats were divided into 3 groups of 10 rats each. Group 1 (platelet-rich plasma group) was exposed to burn injury and topical platelet-rich plasma was applied. Group 2 (control group) was exposed to burn injury only. Group 3 (blood donor group) was used as blood donors for platelet-rich plasma. The rats were killed on the seventh day after burn injury. Tissue hydroxyproline levels were measured and histopathologic changes were examined. Results: Hydroxyproline levels were significantly higher in the platelet-rich plasma group than in the control group (P=.03). Histopathologically, there was significantly less inflammatory cell infiltration (P=.005) and there were no statistically significant differences between groups in fibroblast development, collagen production, vessel proliferations, or epithelization. Conclusions: Platelet-rich plasma seems to partially improve burn healing in this experimental burn injury model. As an initial conclusion, it appears that platelet-rich plasma can be used in humans, although further studies should be performed with this type of treatment

    Hydraulic conductivity and removal rate of compacted clays permeated with landfill leachate

    No full text
    Compacted clay soils are widely used as a barrier to protect environment from leachate migration. The suitability of clay soil for liner material, depends on resistibility to increase in hydraulic conductivity and contaminant transport. In this article, the influence of compaction energy and permeated leachate properties on the hydraulic conductivity were investigated. Natural attenuation capacities of clays compacted both standard and modified compaction methods were also evaluated. With this purpose, a series of laboratory tests were conducted with soil and real leachate samples obtained from Sile-Komurcuoda Organized Landfill Site. DI and real leachate samples were percolated through the laboratory-scale column reactors that were filled with compacted clay samples prepared according to Standard and Modified Proctor method. During percolation, the hydraulic conductivity and natural attenuation capacity of the clay liner were determined by hydraulic conductivity calculation and chemical oxygen demand (COD), suspenden solids (SS), total Kjeldahl nitrogen (TKN), total phosphorus (TP) monitoring, respectively. According to the hydraulic conductivity measurements using leachate, it is shown that hydraulic conductivity decreased in both compacted clay prepared by Standard and Modified Proctor methods, possibly associated with biological and chemical clogging mechanisms. It is thought that clogging formed due to biofilm growth and/or suspended solids accumulation between the particles of the clay soil. When the variations of the COD, SS, TKN, and TP were examined, it was observed that the removal efficiency of the clay compacted by the modified compaction method was greater than the one compacted by the standard compaction method, especially for SS
    corecore