283 research outputs found

    Antioxidant and antimicrobial activities of Morchella conica Pers.

    Get PDF
    Antioxidant capacity and antimicrobial activities of Morchella conica Pers. extracts obtained with ethanol were investigated in this study. Four complementary test systems; namely DPPH free radical scavenging, -carotene/linoleic acid systems, total phenolic compounds and total flavonoid concentration were used. Inhibition values of M. conica ethanol extracts, buthylated hydroxyanisol (BHA) and -tocopherol standards were found to be 96.9, 98.9 and 99.2%, respectively, at aconcentration of 160 ìg/ml. When compared the inhibition levels of methanol extract of M. conica and standards in linoleic acid system, it was observed that the higher the concentration of both M. conicaethanol extract and the standards the higher the inhibition effect. Total flavonoid amount was 9.17±0.56ìg mg-1 quercetin equivalent while the phenolic compound amount was 41.93±0.29 ìg mg-1 pyrocatecholequivalent in the ethanolic extract. The antimicrobial effect of M. conica ethanol extract was tested against six species of Gram-positive bacteria, seven species of Gram-negative bacteria and one speciesof yeast. The M. conica ethanol extract had a narrow antibacterial spectrum against tested microorganisms. The most susceptible bacterium was M. flavus. The crude extract was found active on S. aureus ATCC 25923 and S. aureus Cowan I. The M. conica ethanol extract did not exhibit anticandidal activity against C. albican

    Free-radical scavenging capacity and antimicrobial activity of wild edible mushroom from Turkey

    Get PDF
    Antioxidant capacity and antimicrobial activities of Ramaria flava (Schaeff) Quel. (RF) extracts obtained with ethanol were investigated in this study. Four complementary test systems; namely DPPH freeradical scavenging, -carotene/linoleic acid systems, total phenolic compounds and total flavonoid concentration have been used. Inhibition values of R. flava extracts, BHA and -tocopherol standardswere found to be 94.7, 98.9 and 99.2%, respectively, at 160ƒÊg/ml. When compared the inhibition levels of ethanol extract of R. flava and standards in linoleic acid system, it was observed that the higher theconcentration of both RF ethanol extract and the standards the higher the inhibition effect. Total flavonoid amount was 8.27}0.28 ƒÊg mg-1 quercetin equivalent while the total phenolic compound amountwas 39.83}0.32 ƒÊg mg-1 pyrocatechol equivalent in the ethanolic extract. The ethanol extract of R. flava inhibited the growth of Gram-positive bacteria better than Gram-negative bacteria and yeast. The crude extract showed no antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Morganella morganii and Proteus vulgaris. The antimicrobial activity profile of R. flava against tested strains indicated that Micrococcus flavus, Micrococcus luteus and Yersinia enterocolitica was the most susceptible bacteria of all the test strains. R. flava was found to be inactive against Candida albicans

    Investigating the biological properties of carbohydrate derived fulvic acid (CHD-FA) as a potential novel therapy for the management of oral biofilm infections.

    Get PDF
    Background: A number of oral diseases, including periodontitis, derive from microbial biofilms and are associated with increased antimicrobial resistance. Despite the widespread use of mouthwashes being used as adjunctive measures to control these biofilms, their prolonged use is not recommended due to various side effects. Therefore, alternative broad-spectrum antimicrobials that minimise these effects are highly sought after. Carbohydrate derived fulvic acid (CHD-FA) is an organic acid which has previously demonstrated to be microbiocidal against Candida albicans biofilms, therefore, the aims of this study were to evaluate the antibacterial activity of CHD-FA against orally derived biofilms and to investigate adjunctive biological effects.<p></p> Methods: Minimum inhibitory concentrations were evaluated for CHD-FA and chlorhexidine (CHX) against a range of oral bacteria using standardised microdilution testing for planktonic and sessile. Scanning electron microscopy was also employed to visualise changes in oral biofilms after antimicrobial treatment. Cytotoxicity of these compounds was assessed against oral epithelial cells, and the effect of CHD-FA on host inflammatory markers was assessed by measuring mRNA and protein expression.<p></p> Results: CHD-FA was highly active against all of the oral bacteria tested, including Porphyromonas gingivalis, with a sessile minimum inhibitory concentration of 0.5%. This concentration was shown to kill multi-species biofilms by approximately 90%, levels comparable to that of chlorhexidine (CHX). In a mammalian cell culture model, pretreatment of epithelial cells with buffered CHD-FA was shown to significantly down-regulate key inflammatory mediators, including interleukin-8 (IL-8), after stimulation with a multi-species biofilm.<p></p> Conclusions: Overall, CHD-FA was shown to possess broad-spectrum antibacterial activity, with a supplementary function of being able to down-regulate inflammation. These properties offer an attractive spectrum of function from a naturally derived compound, which could be used as an alternative topical treatment strategy for oral biofilm diseases. Further studies in vitro and in vivo are required to determine the precise mechanism by which CHD-FA modulates the host immune response.<p></p&gt

    Visible photoluminescence from SiOx films grown by low temperature plasma enhanced chemical vapor deposition

    Get PDF
    a-SiOx films of varying stoichiometry have been prepared by low temperature plasma enhanced chemical vapor deposition. The majority of films showed photoluminescence (PL) and films prepared in a narrow range of gas flows exhibited much stronger PL after annealing. Peak PL energies ranging from the ultraviolet to the near infrared have been observed. PL, infrared and X-ray diffraction on selected samples indicate formation of Si clusters in the films. The effects of annealing on the PL properties of the films have been found to depend on initial stoichiometry of the films. © 1995

    Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules

    Get PDF
    Background: Inflammation within the oral cavity occurs due to dysregulation between microbial biofilms and the host response. Understanding how different oral hygiene products influence inflammatory properties is important for the development of new products. Therefore, creation of a robust host-pathogen biofilm platform capable of evaluating novel oral healthcare compounds is an attractive option. We therefore devised a multi-species biofilm co-culture model to evaluate the naturally derived polyphenol resveratrol (RSV) and gold standard chlorhexidine (CHX) with respect to anti-biofilm and anti-inflammatory properties.<p></p> Methods: An in vitro multi-species biofilm containing <i>S. mitis, F. nucleatum, P. Gingivalis</i> and <i>A. Actinomycetemcomitans</i> was created to represent a disease-associated biofilm and the oral epithelial cell in OKF6-TERT2. Cytotoxicity studies were performed using RSV and CHX. Multi-species biofilms were either treated with either molecule, or alternatively epithelial cells were treated with these prior to biofilm co-culture. Biofilm composition was evaluated and inflammatory responses quantified at a transcriptional and protein level.<p></p> Results: CHX was toxic to epithelial cells and multi-species biofilms at concentrations ranging from 0.01-0.2%. RSV did not effect multi-species biofilm composition, but was toxic to epithelial cells at concentrations greater than 0.01%. In co-culture, CHX-treated biofilms resulted in down regulation of the inflammatory chemokine IL-8 at both mRNA and protein level. RSV-treated epithelial cells in co-culture were down-regulated in the release of IL-8 protein, but not mRNA.<p></p> Conclusions: CHX possesses potent bactericidal properties, which may impact downstream inflammatory mediators. RSV does not appear to have bactericidal properties against multi-species biofilms, however it did appear to supress epithelial cells from releasing inflammatory mediators. This study demonstrates the potential to understand the mechanisms by which different oral hygiene products may influence gingival inflammation, thereby validating the use of a biofilm co-culture model.<p></p&gt

    First Observation of PP-odd γ\gamma Asymmetry in Polarized Neutron Capture on Hydrogen

    Full text link
    We report the first observation of the parity-violating 2.2 MeV gamma-ray asymmetry AγnpA^{np}_\gamma in neutron-proton capture using polarized cold neutrons incident on a liquid parahydrogen target at the Spallation Neutron Source at Oak Ridge National Laboratory. AγnpA^{np}_\gamma isolates the ΔI=1\Delta I=1, \mbox{3S13P1^{3}S_{1}\rightarrow {^{3}P_{1}}} component of the weak nucleon-nucleon interaction, which is dominated by pion exchange and can be directly related to a single coupling constant in either the DDH meson exchange model or pionless EFT. We measured Aγnp=[3.0±1.4(stat)±0.2(sys)]×108A^{np}_\gamma = [-3.0 \pm 1.4 (stat) \pm 0.2 (sys)]\times 10^{-8}, which implies a DDH weak πNN\pi NN coupling of hπ1=[2.6±1.2(stat)±0.2(sys)]×107h_{\pi}^{1} = [2.6 \pm 1.2(stat) \pm 0.2(sys)] \times 10^{-7} and a pionless EFT constant of C3S13P1/C0=[7.4±3.5(stat)±0.5(sys)]×1011C^{^{3}S_{1}\rightarrow ^{3}P_{1}}/C_{0}=[-7.4 \pm 3.5 (stat) \pm 0.5 (sys)] \times 10^{-11} MeV1^{-1}. We describe the experiment, data analysis, systematic uncertainties, and the implications of the result.Comment: 6 pages, 5 figure

    Space technology capacity building in support of SDG 2030 through CubeSat SharjahSat-l

    Get PDF
    The SHARJAH-SAT-1 would be the first CubeSat mission to be developed by the Sharjah Academy for Astronomy, Space Sciences, and Technology (SAASST)students and researchers, with the aim of not only designing, fabricating, testing & launching the CubeSat itself, but also building the capacities and expertise for future SAASST CubeSat missions as well. For the project, SAASST is working in close collaboration with an experienced international partner, the Istanbul Technical University, Space Systems Design and Test Laboratory which has already developed and launched 5 CubeSats into low earth orbit. Overall, the project, puts the human capacity development in its center, in support of UN SDG 2030 for an equal world

    Powder Compaction: Compression Properties of Cellulose Ethers

    Get PDF
    Effective development of matrix tablets requires a comprehensive understanding of different raw material attributes and their impact on process parameters. Cellulose ethers (CE) are the most commonly used pharmaceutical excipients in the fabrication of hydrophilic matrices. The innate good compression and binding properties of CE enable matrices to be prepared using economical direct compression (DC) techniques. However, DC is sensitive to raw material attributes, thus, impacting the compaction process. This article critically reviews prior knowledge on the mechanism of powder compaction and the compression properties of cellulose ethers, giving timely insight into new developments in this field
    corecore