37 research outputs found

    Accuracy and reliability of chatbot responses to physician questions

    Get PDF
    IMPORTANCE: Natural language processing tools, such as ChatGPT (generative pretrained transformer, hereafter referred to as chatbot), have the potential to radically enhance the accessibility of medical information for health professionals and patients. Assessing the safety and efficacy of these tools in answering physician-generated questions is critical to determining their suitability in clinical settings, facilitating complex decision-making, and optimizing health care efficiency. OBJECTIVE: To assess the accuracy and comprehensiveness of chatbot-generated responses to physician-developed medical queries, highlighting the reliability and limitations of artificial intelligence-generated medical information. DESIGN, SETTING, AND PARTICIPANTS: Thirty-three physicians across 17 specialties generated 284 medical questions that they subjectively classified as easy, medium, or hard with either binary (yes or no) or descriptive answers. The physicians then graded the chatbot-generated answers to these questions for accuracy (6-point Likert scale with 1 being completely incorrect and 6 being completely correct) and completeness (3-point Likert scale, with 1 being incomplete and 3 being complete plus additional context). Scores were summarized with descriptive statistics and compared using the Mann-Whitney U test or the Kruskal-Wallis test. The study (including data analysis) was conducted from January to May 2023. MAIN OUTCOMES AND MEASURES: Accuracy, completeness, and consistency over time and between 2 different versions (GPT-3.5 and GPT-4) of chatbot-generated medical responses. RESULTS: Across all questions (n = 284) generated by 33 physicians (31 faculty members and 2 recent graduates from residency or fellowship programs) across 17 specialties, the median accuracy score was 5.5 (IQR, 4.0-6.0) (between almost completely and complete correct) with a mean (SD) score of 4.8 (1.6) (between mostly and almost completely correct). The median completeness score was 3.0 (IQR, 2.0-3.0) (complete and comprehensive) with a mean (SD) score of 2.5 (0.7). For questions rated easy, medium, and hard, the median accuracy scores were 6.0 (IQR, 5.0-6.0), 5.5 (IQR, 5.0-6.0), and 5.0 (IQR, 4.0-6.0), respectively (mean [SD] scores were 5.0 [1.5], 4.7 [1.7], and 4.6 [1.6], respectively; P = .05). Accuracy scores for binary and descriptive questions were similar (median score, 6.0 [IQR, 4.0-6.0] vs 5.0 [IQR, 3.4-6.0]; mean [SD] score, 4.9 [1.6] vs 4.7 [1.6]; P = .07). Of 36 questions with scores of 1.0 to 2.0, 34 were requeried or regraded 8 to 17 days later with substantial improvement (median score 2.0 [IQR, 1.0-3.0] vs 4.0 [IQR, 2.0-5.3]; P \u3c .01). A subset of questions, regardless of initial scores (version 3.5), were regenerated and rescored using version 4 with improvement (mean accuracy [SD] score, 5.2 [1.5] vs 5.7 [0.8]; median score, 6.0 [IQR, 5.0-6.0] for original and 6.0 [IQR, 6.0-6.0] for rescored; P = .002). CONCLUSIONS AND RELEVANCE: In this cross-sectional study, chatbot generated largely accurate information to diverse medical queries as judged by academic physician specialists with improvement over time, although it had important limitations. Further research and model development are needed to correct inaccuracies and for validation

    Drug-induced Fatal Arrhythmias: Acquired long QT and Brugada Syndromes

    Get PDF
    Since the early 1990s, the concept of primary “inherited” arrhythmia syndromes or ion channelopathies has evolved rapidly as a result of revolutionary progresses made in molecular genetics. Alterations in genes coding for membrane proteins such as ion channels or their associated proteins responsible for the generation of cardiac action potentials (AP) have been shown to cause specific malfunctions which eventually lead to cardiac arrhythmias. These arrhythmic disorders include congenital long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, short QT syndrome, progressive cardiac conduction disease, etc. Among these, long QT and Brugada syndromes are the most extensively studied, and drugs cause a phenocopy of these two diseases. To date, more than 10 different genes have been reported to be responsible for each syndrome. More recently, it was recognized that long QT syndrome can be latent, even in the presence of an unequivocally pathogenic mutation (silent mutation carrier). Co-existence of other pathological conditions in these silent mutation carriers may trigger a malignant form of ventricular arrhythmia, the so called torsade de pointes (TdP) that is most commonly brought about by drugs. In analogy to the drug-induced long QT syndrome, Brugada type 1 ECG can also be induced or unmasked by a wide variety of drugs and pathological conditions; so physicians may encounter patients with a latent form of Brugada syndrome. Of particular note, Brugada syndrome is frequently associated with atrial fibrillation whose therapeutic agents such as Vaughan Williams class IC drugs can unmask the dormant and asymptomatic Brugada syndrome. This review describes two types of drug-induced arrhythmias: the long QT and Brugada syndromes

    Abnormal Cardiac Repolarization After Seizure Episodes in Structural Brain Diseases: Cardiac Manifestation of Electrical Remodeling in the Brain?

    Get PDF
    Background: Abnormal cardiac repolarization is observed in patients with epilepsy and can be associated with sudden death. We investigated whether structural brain abnormalities are correlated with abnormal cardiac repolarizations in patients with seizure or epilepsy. Methods and Results: We retrospectively analyzed and compared 12-lead ECG parameters following seizures between patients with and without structural brain abnormalities. A total of 96 patients were included: 33 women (17 with and 16 without brain abnormality) and 63 men (44 with and 19 without brain abnormality). Brain abnormalities included past stroke, chronic hematoma, remote bleeding, tumor, trauma, and postsurgical state. ECG parameters were comparable for heart rate, PR interval, and QRS duration between groups. In contrast, corrected QT intervals evaluated by Fridericia, Framingham, and Bazett formulas were prolonged in patients with brain abnormality compared with those without (women: Fridericia [normal versus abnormal], 397.4±32.7 versus 470.9±48.9; P=0.002; Framingham, 351.0±40.1 versus 406.2±46.1; P=0.002; Bazett, 423.8±38.3 versus 507.7±56.6; P<0.0001; men: Fridericia, 403.8±30.4 versus 471.0±47.1; P<0.0001; Framingham, 342.7±36.4 versus 409.4±45.8; P<0.0001; Bazett, 439.3±38.6 versus 506.2±56.8; P<0.0001). QT dispersion and Tpeak-Tend intervals were comparable between groups. We also observed abnormal ST-segment elevation in 5 patients. Importantly, no patients showed fatal arrhythmias during or after seizures. Conclusions: Our study demonstrated that brain abnormalities can be associated with abnormal cardiac repolarization after seizures, which might be a manifestation of electrophysiological remodeling in the brain

    Loss of function of hNav1.5 by a ZASP1 mutation associated with intraventricular conduction disturbances in left ventricular noncompaction

    Get PDF
    BACKGROUND: Defects of cytoarchitectural proteins can cause left ventricular noncompaction, which is often associated with conduction system diseases. We have previously identified a p.D117N mutation in the LIM domain-binding protein 3-encoding Z-band alternatively spliced PDZ motif gene (ZASP) in a patient with left ventricular noncompaction and conduction disturbances. We sought to investigate the role of p.D117N mutation in the LBD3 NM_001080114.1 isoform (ZASP1-D117N) for the regulation of cardiac sodium channel (Na(v)1.5) that plays an important role in the cardiac conduction system. METHODS AND RESULTS: Effects of ZASP1-wild-type and ZASP1-D117N on Na(v)1.5 were studied in human embryonic kidney-293 cells and neonatal rat cardiomyocytes. Patch-clamp study demonstrated that ZASP1-D117N significantly attenuated I(Na) by 27% in human embryonic kidney-293 cells and by 32% in neonatal rat cardiomyocytes. In addition, ZASP1-D117N rightward shifted the voltage-dependent activation and inactivation in both systems. In silico simulation using Luo-Rudy phase 1 model demonstrated that altered Na(v)1.5 function can reduce cardiac conduction velocity by 28% compared with control. Pull-down assays showed that both wild-type and ZASP1-D117N can complex with Na(v)1.5 and telethonin/T-Cap, which required intact PDZ domains. Immunohistochemical staining in neonatal rat cardiomyocytes demonstrates that ZASP1-D117N did not significantly disturb the Z-line structure. Disruption of cytoskeletal networks with 5-iodonaphthalene-1-sulfonyl homopiperazine and cytochalasin D abolished the effects of ZASP1-D117N on Na(v)1.5. CONCLUSIONS: ZASP1 can form protein complex with telethonin/T-Cap and Na(v)1.5. The left ventricular noncompaction-specific ZASP1 mutation can cause loss of function of Na(v)1.5, without significant alteration of the cytoskeletal protein complex. Our study suggests that electric remodeling can occur in left ventricular noncompaction subject because of a direct effect of mutant ZASP on Na(v)1.5

    A novel SCN5A mutation associated with drug induced Brugada type ECG

    Get PDF
    Background: Class IC antiarrhythmic agents may induce acquired forms of Brugada Syndrome. We have identified a novel mutation in SCN5A, the gene that encodes the α-subunit of the human cardiac sodium channel (hNav1.5), in a patient who exhibited Brugada- type ECG changes during pharmacotherapy of atrial arrhythmias. Objective: To assess whether the novel mutation p.V1328M can cause drug induced Brugada Syndrome. Methods: Administration of pilsicainide, a class IC antiarrhythmic agent, caused Brugada- type ST elevation in a 66-year-old Japanese male who presented with paroxysmal atrial fibrillation (PAF), type I atrial flutter and inducible ventricular fibrillation (VF) during electrophysiological study. Genetic screening using direct sequencing identified a novel SCN5A variant, p. V1328M. Electrophysiological parameters of WT and p.V1328M and their effects on drug pharmacokinetics were studied using the patch-clamp method. Results: Whole-cell sodium current densities were similar for WT and p.V1328M channels. While p. V1328M mutation did not affect the voltage-dependence of the activation kinetics, it caused a positive shift of voltage-dependent steady-state inactivation by 7 mV. The tonic block in the presence of pilsicainide was similar in WT and p.V1328M, when sodium currents were induced by a low frequency pulse protocol (q15s). On the contrary, p.V1328M mutation enhanced pilsicainide induced use-dependent block at 2 Hz. (Ki: WT, 35.8 μM; V1328M, 19.3 μM). Conclusion: Our study suggests that a subclinical SCN5A mutation, p.V1328M, might predispose individuals harboring it to drug-induced Brugada Syndrome

    Investigation of relationship of visceral body fat and inflammatory markers with metabolic syndrome and its components among apparently healthy individuals

    No full text
    Ankarali, Handan Camdeviren/0000-0002-3613-0523WOS: 000365271900131PubMed: 26550229Metabolic syndrome is a cluster of disorders and great risk for cardiovascular diseases. We aimed to investigate association between severity of metabolic syndrome (MetS) and anthropometric measurements, and to evaluate correlation of MetS and its components with metabolic deterioration and inflammatory indexes. The cross-sectional study enrolled 1474 patients with obesity and overweight. The patients were grouped as MetS and Non-MetS, and were sub-grouped as group 1 (three criteria), 2 (four criteria) and 3 (>= five criteria) according to NCEP ATP III. Mean age was 38.7 +/- 11.9 years and BMI was 35.1 +/- 6.3 kg/m(2). Lipid profile, anthropometric and blood pressure measurements, liver function tests, bioelectric impedance body fat compositions, insulin resistance and HbA1c, and spot urinary albumin-creatinine ratio were significantly different between groups of MetS and Non-MetS. Age, lipid profile, bioelectric impedance fat analyses, BMI, blood pressure values, glucose, insulin resistance, uric acid and hs-CRP levels were significantly different between groups of MetS component groups. ROC analysis revealed that hs-CRP was found to be more predictive for severity of metabolic syndrome components 3 and 4 (P=0.030); uric acid and visceral fat were more actual to predict severity of metabolic syndrome between 3 and 5 MetS components, (P=0.006) and uric acid was detected as more actual to predict severity of MetS between 4 and 5 components (P=0.023). In conclusion, uric acid, hs-CRP and visceral body fat composition were useful to predict to severity of MetS in primary care
    corecore