68 research outputs found

    Dose distribution in the thyroid gland following radiation therapy of breast cancer-a retrospective study

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To relate the development of post-treatment hypothyroidism with the dose distribution within the thyroid gland in breast cancer (BC) patients treated with loco-regional radiotherapy (RT).</p> <p>Methods and materials</p> <p>In two groups of BC patients postoperatively irradiated by computer tomography (CT)-based RT, the individual dose distributions in the thyroid gland were compared with each other; Cases developed post-treatment hypothyroidism after multimodal treatment including 4-field RT technique. Matched patients in Controls remained free for hypothyroidism. Based on each patient's dose volume histogram (DVH) the volume percentages of the thyroid absorbing respectively 20, 30, 40 and 50 Gy were then estimated (V20, V30, V40 and V50) together with the individual mean thyroid dose over the whole gland (MeanTotGy). The mean and median thyroid dose for the included patients was about 30 Gy, subsequently the total volume of the thyroid gland (VolTotGy) and the absolute volumes (cm<sup>3</sup>) receiving respectively < 30 Gy and ≄ 30 Gy were calculated (Vol < 30 and Vol ≄ 30) and analyzed.</p> <p>Results</p> <p>No statistically significant inter-group differences were found between V20, V30, V40 and V50Gy or the median of MeanTotGy. The median VolTotGy in Controls was 2.3 times above VolTotGy in Cases (ρ = 0.003), with large inter-individual variations in both groups. The volume of the thyroid gland receiving < 30 Gy in Controls was almost 2.5 times greater than the comparable figure in Cases.</p> <p>Conclusions</p> <p>We concluded that in patients with small thyroid glands after loco-radiotherapy of BC, the risk of post-treatment hypothyroidism depends on the volume of the thyroid gland.</p

    3, 3â€Č5 Triiodo L Thyronine Induces Apoptosis in Human Breast Cancer MCF-7cells, Repressing SMP30 Expression through Negative Thyroid Response Elements

    Get PDF
    Thyroid hormones regulate cell proliferation, differentiation as well as apoptosis. However molecular mechanism underlying apoptosis as a result of thyroid hormone signaling is poorly understood. The antiapoptotic role of Senescence Marker Protein-30 (SMP30) has been characterized in response to varieties of stimuli as well as in knock out model. Our earlier data suggest that thyroid hormone 3, 3'5 Triiodo L Thyronine (T(3)), represses SMP30 in rat liver.In highly metastatic MCF-7, human breast cancer cell line T3 treatment repressed SMP30 expression leading to enhanced apoptosis. Analysis by flow cytometry and other techniques revealed that overexpression and silencing of SMP30 in MCF-7 resulted in decelerated and accelerated apoptosis respectively. In order to identify the cis-acting elements involved in this regulation, we have analyzed hormone responsiveness of transiently transfected hSMP30 promoter deletion reporter vectors in MCF-7 cells. As opposed to the expected epigenetic outcome, thyroid hormone down regulated hSMP30 promoter activity despite enhanced recruitment of acetylated H3 on thyroid response elements (TREs). From the stand point of established epigenetic concept we have categorised these two TREs as negative response elements. Our attempt of siRNA mediated silencing of TRÎČ, reduced the fold of repression of SMP30 gene expression. In presence of thyroid hormone, Trichostatin- A (TSA), which is a Histone deacetylase (HDAC) inhibitor further inhibited SMP30 promoter activity. The above findings are in support of categorisation of both the thyroid response element as negative response elements as usually TSA should have reversed the repressions.This is the first report of novel mechanistic insights into the remarkable downregulation of SMP30 gene expression by thyroid hormone which in turn induces apoptosis in MCF-7 human breast cancer cells. We believe that our study represents a good ground for future effort to develop new therapeutic approaches to challenge the progression of breast cancer

    Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with traumatic brain injury (TBI) often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures.</p> <p>Methods</p> <p>Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM) that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI). Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p < 0.05 criterion, corrected for multiple comparisons. False positive rates were verified by comparing the data from each control subject with the data from the remaining control population using identical statistical procedures.</p> <p>Results</p> <p>The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes.</p> <p>Conclusions</p> <p>MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.</p
    • 

    corecore