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Abstract | Neuroscience is contributing to an understanding of the biological bases of human 

intelligence differences. This is principally along two empirical fronts: genetics — 

quantitative and molecular — and brain imaging. Quantitative genetic studies have 

established that there are additive genetic contributions to different aspects of cognitive 

ability — especially general intelligence (g) — and how they change through the lifespan. 

Molecular genetic studies have yet to identify well-replicated contributions from individual 

genes. Structural and functional brain imaging studies have identified differences in brain 

pathways, especially parieto-frontal, that contribute to intelligence differences. There is also 

evidence for brains being more efficient in individuals with higher intelligence. 
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People differ along mental continua. Such individual differences are the domain of 

differential psychology. Most research in this area of psychology focuses on cognitive and 

personality differences, which can be investigated as quantitative traits. Differential 

psychology has three main aims with respect to its traits of interest: to describe them 

accurately, to discover the real-life impact of trait differences, and to discover the aetiologies 

of trait differences, including their biological bases. The field that investigates the biological 

bases of individual differences in these traits is differential neuroscience. Here we review the 

differential neuroscience of human intelligence. 

Individual differences in intelligence are usually measured using psychometric tests. 

These tests cover cognitive domains such as reasoning, processing speed, executive function, 

memory, and spatial ability. Although cognitive domains are sometimes thought of as 

independent, differential psychology has firmly established that they are not; people who 

perform better in one domain also tend to perform better in the others. This is recognised in 

the term ‘general intelligence’, which is usually summarised as ‘g’ (Box 1 and below). Some 

individual tests—such as Raven’s Progressive Matrices, a test of non-verbal reasoning—are 

good indicators of g. In this Review we discuss how neuroscience can inform us about the 

origins of differences in this general cognitive ability.  

We recognise that much of cognitive neuroscience tends to focus on the cognitive 

domains themselves. However, the neuroscientific aspect of general intelligence is important 

because general intelligence is responsible for much of the predictive validity of cognitive 

tests, and neuroscientific studies of general intelligence have yielded some clear results. 

Definitions of general intelligence are shown in Box 1. The terms (general) cognitive ability, 

mental ability, intelligence and IQ — in its lay and technical usages — are used 

interchangeably to describe the strong common core that cognitive tests share. To illustrate 
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the importance of scores on psychometric tests, we first describe their characteristics and 

their impact on life. 

The distribution of intelligence differences in the population is approximately normal, 

with the exception of a slight excess at the lower end of the distribution caused by severe 

disorders that involve disrupted cognitive abilities. Males have a slight but consistently wider 

distribution than females at both ends1. Individual differences in human intelligence are 

among the most robust observations in psychology. They are relatively stable in rank order 

throughout development2, and even over very long time spans. A single 45-minute test of 

general intelligence test had a correlation of 0.63 (0.73 when disattenuated for restriction of 

range) in people tested twice, at ages 11 and then 79 years3. General intelligence differences 

are associated with important life outcomes including school achievement4. In a study 

involving tens of thousands of children, general intelligence at age 11 years had a correlation 

of over 0.8 with scores on national tests of educational achievement five years later5. General 

intelligence is strongly predictive of occupational attainment, social mobility6, and job 

performance7. People with higher general intelligence in childhood or early adulthood have 

better health in middle and later life, and are less likely to die young8. For example, among 

one million men followed for about 20 years after taking intelligence tests at about age 20, a 

standard deviation advantage in general intelligence was associated with a 32% reduction in 

mortality9. Intelligence is also important in everyday decision-making7. 

 

The psychometric properties of intelligence 

Well-established results from differential psychology studies have shown that it is 

inappropriate to assume that performing any cognitive task involves only one relevant mental 

module (or faculty). Consider the individual differences that show up on a test of arithmetic 

involving fractions. Do some people perform better than others because they differ on general 
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intelligence, which we know contributes to all cognitive tasks, irrespective of their content? 

Or is there some cognitive faculty that contributes to tasks involving mathematical tasks in 

general, but not to other activities such as verbal and spatial tasks? Or do people differ on the 

specific ability involved in doing fractional arithmetic in ways that have nothing to do with 

ability on any other cognitive task, even other mathematical tasks? Or is it simply that people 

differ in their exposure to and practice with fractional arithmetic tasks? 

Each of these possibilities is correct to some degree, for the following reasons. First, 

scores on cognitive ability tasks of all kinds are positively correlated. This is known as the 

positive manifold. In typical test batteries consisting of 10-15 different cognitive tasks 

involving a wide variety of materials and content, a general intelligence (g) factor almost 

always accounts for 40% or more of the total variance. Second, each individual cognitive test 

also shows substantial amounts of more specific variance, generally ranging from 20-50% of 

the total variance. Some of this is error variance or variance due to fatigue, mood, motivation, 

etc., but some of it is systematic variance specific to each test, thus reflecting the particular 

abilities involved in it. Third, tests that are more similar in content are more highly correlated 

with each other than with tests that have different content. That is, people tend to have areas 

of relative strength and weakness in certain broad domains of cognitive ability. For example, 

some are very good at all kinds of problems involving spatial manipulation but not quite as 

good at verbal problems, whereas others have the opposite pattern. These individual 

differences in broad cognitive domains—though given much attention in cognitive 

neuroscience—contribute small amounts of variance by comparison with g and the specific 

tests. Fourth, some of the variance also reflects individual differences in exposure to testing 

in general and exposure to the specific tests involved in particular.  

An example of how the hierarchical structure of intelligence variance emerges from test 

scores is shown in Figure 1. This general, hierarchical pattern of cognitive ability variance 
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components has been known for about a century10. It has been replicated in hundreds of 

datasets11. Spearman proposed that the general intelligence (mental ability) factor reflects a 

general cognitive ability that is applicable to any kind of cognitive problem10. He termed it g, 

intending to avoid value judgements and arguments by using a character that was free from 

prior connotations and misunderstandings. Despite this, g has been the subject of controversy 

ever since (Box 2). It is important to emphasise g: it accounts for a relatively large amount of 

variance, it is the source of most of the predictive power of cognitive tests and, as we shall 

see, it is the locus of most of the genetic variance.  

 

Seguing into neuroscience 

The neuroscience of intelligence is constrained by—and must explain—the following 

established facts about cognitive test performance: about half the variance across varied 

cognitive tests is contained within general cognitive ability; there is a relatively small 

proportion of variance within broad-ish domains of capability; there is some variance in 

specific abilities; and there are distinct ageing patterns for what are called fluid and 

crystallised aspects of cognitive ability. 

The existence of g creates a complicated situation for neuroscience. The fact that g 

contributes substantial variance to all specific cognitive ability tests is generally interpreted as 

indicating that it contributes directly in some way to performance on those tests. That is, 

when domains of thinking skill such as executive function and memory, or specific tasks such 

as mental arithmetic and non-verbal reasoning on the Raven’s Matrices test, are studied, 

neuroscientists are observing brain activity related to g as well as the specific task activities. 

This undermines the ability to determine localized brain activities specific to the task at hand. 

That is, cognitive task and cognitive ability are not isomorphic: cognitive tasks draw upon 

multiple abilities at different levels of generality. Moreover, studies that investigate 
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biological associations with intelligence are rarely conducted using a statistically-derived g 

factor or psychometrically validated factors representing the major cognitive domains that are 

more specific than g. Instead, they generally rely on total IQ scores from a battery of tests, or 

single tests believed to load highly on the general cognitive ability factor. Fortunately, this 

actually matters surprisingly little: results are similar whatever measure is used, which 

accentuates the complications of studying the neural correlates of intelligence. 

In differential psychology there has been a tradition of seeking fundamental parameters 

of cognitive processing or single biological variables that might account for intelligence 

differences. The harvest has been sparse12, but two biological findings have persisted and 

accumulated: general intelligence differences are substantially heritable13; and general 

intelligence and brain size show modest, positive correlations14. Of course, finding 

correlations does not explain how one thing affects another, and explaining such correlations 

is a scientific task of a different order of difficulty from finding them. Nevertheless, these two 

persistent findings were the basis for the two principal approaches to the present-day 

neuroscience of general intelligence: genetics and brain imaging. 

 

Basic genetic influences on intelligence 

Investigation of the presence of genetic influences on general intelligence dates back to the 

19th century, when Francis Galton published two papers concluding that mental abilities were 

transmitted via heredity from one generation to another15. Despite an intermittently hostile 

political reception, many studies since then—based principally on twin and adoption 

samples—have replicated this observation, and none has contradicted it16. Estimates of how 

much of the total variance in general intelligence can be attributed to genetic influences range 

from 30-80%. General intelligence factors, in the form of latent traits from which 

measurement error has been removed, fall at the high end of this range. Broad domains of 
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cognitive ability―such as verbal and perceptual-organisational abilities―generally show 

similar amounts of genetic influence17-20, although the genetic influence on memory tends to 

be somewhat smaller17-21. However, much of the heritability of these domains is due to 

genetic effects on general intelligence, with which they are very highly correlated. Consistent 

with the presence of measurement error in variance unique to specific tests, genetic 

influences on specific abilities are generally substantially lower.  

The heritability of general intelligence increases with age22-24. It is about 30% in very 

young childhood25, and grows to as much as 70% to 80% in adulthood17,26,27. Because this is 

now well established, recent studies have shifted to investigating how genetic influences on 

various mental abilities are related and how they change with development. For example, in a 

Dutch twin study, the same individuals were given mental test batteries repeatedly to assess 

general intelligence from age 5 to age 1228. The heritability of general intelligence was 26% 

at age 5, 39% at age 7, 54% at age 10, and 64% at age 12. Rank order of general intelligence 

showed very high stability over time, largely due to the genetic influences on g (See Box 3). 

 

Shared genetic influences between brain structure/function and intelligence? 

In adults, there are strong genetic influences on many brain structures and regions — 

including on the density and the volume of gray and white matter in corpus callosum, 

superior frontal and temporal cortex, medial frontal cortex, amygdala, hippocampus, Broca’s 

area, anterior cingulate, Heschl’s gyrus, and postcentral gyrus — and on overall brain 

volume; this explains 70% to 90% of the variance in these measures29-33. This is true of 

aspects of brain functioning too, such as the dynamic complexity of brain oscillations thought 

to be involved in executive function34, and information processing capacity and efficiency 

such as executive function35 and inspection time26. Variations in these structures and 

functions may be endophenotypes for intelligence; that is, they might be intermediate 
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physiological markers that contribute directly to intelligence. Therefore, they might be linked 

more closely to the genes involved in intelligence than is intelligence itself. In fact, in all 

studies to date the genetic influences on these structures and functions were highly correlated 

with those on general intelligence29,31,32,36. This important result — that at least some neural 

correlates of intelligence owe their associations to shared genetic influences — is drawn from 

multivariate genetic studies (see Box 4). 

Brain development in childhood clearly involves morphological change, which is under 

some form of genetic control37,38. A longitudinal brain imaging study of children and 

adolescents examined twins and singletons ranging in age from 5 to 1839. They were recruited 

in 2001, and have been assessed at approximately 2-year intervals. In this sample, 

developmental trajectories of cortical thickness predicted IQ at age 20 better than did 

differences in cortical thickness at age 2039. There were strong genetic influences (77% to 

88% of the variance) on the thickness of the midsagittal area of the corpus callosum, the 

volume of the caudate nucleus, and gray and white matter volumes of the total cerebrum, 

parietal lobes, and temporal lobes. Genetic influences on the volumes of the cerebellum and 

lateral ventricles were smaller (both 49%). Again, these point to a distributed pattern of brain 

correlates of general intelligence, which is addressed below. Complicating the situation for 

brain imaging studies, genetic influences on general intelligence that were shared across brain 

regions were stronger than those specific to any one region.39 Genetic influences on brain 

regions tended to be strongest when brain regions were under greatest development: the 

primary sensory motor cortex, which develops early in childhood, showed stronger genetic 

influences during that period, and the dorsal prefrontal cortex and temporal lobes, which 

develop rapidly in adolescence showed stronger genetic influences during that period40. Total 

variance in overall brain morphology generally increased with age, but in white matter it was 

genetic variance that increased and in gray matter it was environmental variance. 
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Molecular genetic studies 

Despite its high heritability, it is, as yet, difficult to name even one genetic locus that is 

reliably associated with normal-range intelligence in young, healthy adults, though some 300 

genes are known to be associated with mental retardation41. After a thorough survey of over 

200 published studies on the 50 or so genes that have been implicated in differences in 

cognitive abilities, it was stated that, 

if the question were to be asked “after 14 years of cognitive genetic research what 

genes can we conclusively say are responsible for the variation in cognition or its 

decline with age in healthy individuals?” the answer would have to be “none”.42 

Most of the genes that have been investigated in studies to date are associated with 

neurotransmitters (two thirds of the studies), disease, development or metabolism. Many 

studies have reported associations between particular polymorphisms and cognitive 

performance, but the associations were often small and most could not be replicated in other 

samples13,42. There are, however, reliable associations, largely limited to older people, 

between APOE polymorphisms and general cognitive ability, episodic memory, processing 

speed and executive function, with the first two of these showing an increasing effect size 

with age43. The increased effect with age is possibly due to the fact that APOE has a role in 

neuronal repair44. 

  There may be faint signals in the noise among molecular genetic studies of 

intelligence to date. For example, a meta-analysis of 16 studies (total N > 9,000) found that a 

common polymorphism in the gene that codes for catechol-O-methyltransferase (COMT) was 

significantly and robustly associated with IQ scores (taken to represent general 

intelligence)45. However, the polymorphism accounted for only 0.1% of variance. Further 

evidence for a contribution of the COMT polymorphism to intelligence has been provided by 
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brain imaging studies in humans, pharmacological studies in animals, and transgenic and 

gene knockout studies in animals46. The valine-to-methionine amino acid substitution 

involved in this polymorphism reduces the activity of this dopamine-degrading enzyme, and 

the polymorphism is thought to affect dopamine function in the prefrontal cortex. 

The Val66Met polymorphism in the gene coding for Brain-Derived Neurotrophic 

Factor (BDNF) is another commonly-studied genetic variant in association with cognitive 

abilities. Most studies report significant effects of this polymorphism on intelligence42,47; 

however, the studies differ with respect to which allele is associated with better cognitive 

performance. Overall, candidate-gene studies of intelligence and specific cognitive abilities 

have been criticised for “Inadequate sample size, population stratification, environmental 

exposure, publication bias, variation in classification and measurements are all examples that 

may make one group’s findings different from those of another”42. 

At this point, it seems unlikely that single genetic loci have major effects on normal-

range intelligence. For example, a modestly-sized genome-wide study of the general factor 

derived from ten separate test scores in the CANTAB cognitive test battery found no 

genome-wide significant single nucleotide polymorphisms or copy number variants, and did 

not replicate genetic variants that had previously been associated with cognitive ability48. It is 

possible that genetic variance in intelligence results from a mutation-selection balance, which 

is the cross-generational accumulation of many mildly harmful mutations that natural 

selection has not yet wiped from the population49,50. Because such variants would be rare and 

our primary methods of identifying genetic association require that variants be common, this 

possibility would be consistent with the fact that we can isolate genetic variants involved in 

mental retardation but not variants involved in normal-range intelligence.   

It would be easy to fill this Review with studies published to date that apparently show 

gene-intelligence associations13,42,48. However, we think that it would be describing straws in 
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the wind, as most of these studies’ findings have not been replicable. Even the associations 

between genetic variations such as COMT and BDNF and intelligence in the normal range — 

for which the studies are quite numerous — are still equivocal.  

The emerging view of genetic influences on intelligence (and indeed many other 

complex, particularly quantitative, phenotypes that have been studied so far, such as height51) 

is that a very large number of genetic variants have very small effects. There might also be 

roles for copy number variations and for rare variants in individual differences in intelligence. 

Consortia formed to produce genome-wide scans will, in the near future, report genetic 

associations with cognitive functions based on subject samples of 10,000 and more. To what 

degree results from these studies prove reliable remains to be seen. 

 

Brain imaging and intelligence differences 

Bigger is better 

Historically, the central working hypothesis in the neuroscience of human intelligence 

differences has been that size matters52,53. Empirical research in this tradition began in the 

19th century, when scholars such as Paul Broca and Francis Galton studied intellectual ability 

and achievement in relation to brain size. The latter was mostly approximated by measures of 

head size, sometimes validated by post-mortem information. Current data indicate that 

intelligence is correlated with head size (r ~ .20)54 and intracranial volume (r ~ .40)55. The 

clearest single body of evidence is that, in healthy people, total brain volume (measured using 

structural MRI) is moderately correlated with intelligence (r ~ .30 to .40)14,54. However, this 

does not mean that the correlation is understood. 

With the advent of MRI technology, it became possible to extend the study of 

intelligence–size relations to individual brain regions in vivo. These studies found 

associations between intelligence and volumes of frontal, parietal and temporal cortices as 
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well as the hippocampus, all seldom larger than r = .2514,55-58. Using MRI, it is also possible 

to separate volumes of gray matter (i.e. mostly nerve cell bodies, but also dendrites and 

supportive glia cells) from those of white matter (i.e. nerve cell axons, their 

interconnections). This approach usually yields slightly higher correlations between 

intelligence and overall gray matter (r ~ .31) than between intelligence and overall white 

matter (r ~ .27), although differences are usually small59.  

Several studies have used voxel-based morphometry on MRI scans to measure the 

volumes of gray matter (and less frequently white matter) in specific brain regions and relate 

them to measures of intelligence. Most of this work has been summarized by Jung and 

Haier60, who assigned the existing results to Brodmann areas (BA) and concluded that a 

network of brain regions, including areas in the dorsolateral prefronatal cortex, the parietal 

lobe, the anterior cingulate, and specific regions in the temporal and occipital lobe relate to 

individual differences in intelligence (Figure 2).  

According to this Parieto-Frontal Integration Theory of intelligence (P-FIT), the 

extrastriate cortex (BAs 18, 19) and fusiform gyrus (BA 37) are involved in intelligence test 

performance because they contribute to the recognition, imagery and elaboration of visual 

input. just as Wernicke’s area (BA 22) does for syntactic auditory input. Information captured 

via these pathways is then processed in the supramarginal (BA 40), superior parietal (BA 7), 

and angular (BA 39) gyri of the parietal lobe, in which structural symbolism, abstraction, and 

elaboration are thought to emerge. These parietal regions may then interact with parts of the 

frontal lobe (especially BAs 6, 9, 10, 45, 46 and 47) to form a working memory network that 

compares different possible task responses. Once a task response  is selectee, the anterior 

cingulate (BA 32) supports response engagement and inhibition of alternative responses. 

These interactions among brain regions are dependent on the white matter fibers that connect 

them, such as the arcuate fasciculus. For most of these brain regions, the left hemisphere 
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seems to be somewhat more important to cognitive task performance than the right. As 

subsequent studies61,62, and also studies using different methodologies (see below), have 

generally confirmed this theory (but see Ref. 63), P-FIT can be considered the best available 

answer to the question of where in the brain intelligence resides. 

Cortical thickness, which reflects the cytoarchitectural characteristics of the neuropil 

much better than measures of gray matter volume59, has been related to intelligence in four 

studies so far29,59,64,65. They all found generally (though not exclusively29,59) positive 

correlations between intelligence and cortical thickness, especially in the prefrontal 

cortex29,59,64 and temporal lobes29,59,65, as well as clustered around areas of multimodal 

association64. 

All these studies on (sometimes extremely fine-grained) measures of brain size and 

intelligence are correlational; the exact relation between the quantity of brain tissue and the 

quality of cognitive functions is largely unknown66,67. Although larger brains, greater gray 

matter volumes, and thicker cortices usually are associated with more neurons, it is unclear 

how and why this should lead to better intellectual performance, especially as brain 

development ― and presumably intelligence development ― involve substantial neuronal 

pruning68. This issue is also relevant in macroencephaly, where pathologically enlarged 

brains are associated with decreased rather than increased cognitive functionality. Related 

questions were raised in a longitudinal study by Shaw and colleagues37. They showed that the 

trajectories of development of cortical thickness in children differed for groups of different 

intelligence. Children with the highest intelligence scores had comparatively thin cortices in 

early childhood, but showed more rapid increases in thickness in the prefrontal and temporal 

lobes until puberty, when all cortices slowly thinned. Thus, it is possible that differences in 

brain development have currently underappreciated roles in intelligence differences. 
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A different, more direct way to test whether a brain area is crucially involved in 

intelligence differences is provided by studies of people with brain lesions. Although lesion 

studies have a long history in the neuroscience of intelligence, it was only recently that the 

limited generalization and specificity of case or small-sample studies of focal brain damage 

were overcome by Gläscher and colleagues, who collected cognitive data from a large sample 

of 241 patients with brain lesions69. Using voxel-based lesion mapping, they found highly 

specific lesion-deficit relations in left frontal and parietal cortex for working memory 

efficiency, in the left inferior frontal cortex for verbal comprehension, and in right parietal 

cortex for perceptual organization ― all subfactors of general intelligence.  

 

The (dis)connected mind  

The emerging consensus from studies of regional brain sizes is that intelligence does not 

reside in a single, narrowly circumscribed brain region such as the frontal lobe. Rather, 

intelligence seems to be best described as a ‘small world’ network70-73. A necessary 

implication is that high intelligence probably requires undisrupted information transfer 

among the involved brain regions along white matter fibres.  

 One way to study white matter in relation to intelligence is to quantify white matter 

lesions on MRI or CT scans. Because white matter is especially prone to age-related decline, 

these lesions have been studied mainly in elderly subjects. These studies found weak but 

consistent relations indicating that people with more white matter lesions have lower 

cognitive ability74,75. The small effect sizes reported in this literature are probably partly due 

to the fact that most studies rely on lesion rating scales that allow for a considerable degree of 

subjectivity. Improving these by using multiple raters somewhat increased the association76. 

 So far, 11 studies across a range of age groups have applied 1H-magnetic resonance 

spectroscopy to examine white matter integrity in relation to intelligence77. Although 
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methods and results were quite heterogeneous, the studies generally found positive 

correlations between intelligence and concentrations of N-acetyl aspartate, a metabolite of the 

oligodendrocytes that form the myelin sheath around nerve fibers, and various white and gray 

matter areas in the brain, supporting the proposed role of white matter in intelligence. 

Studies using diffusion tensor (DT)-MRI showed significant correlations between water 

diffusion parameters that quantify white matter integrity and intelligence in children78,79, 

young adults80 and old adults78,81, especially in the centrum semiovale. Consistent with these 

findings, two studies that applied tractography on DT-MRI data to calculate integrity indices 

for specific white matter tracts found positive correlations between cognitive ability and 

white matter integrity, especially for long association fibers, such as the arcuate and uncinate 

fasciculi75,82. One study using cognitive data spanning several decades, found a significant 

association between childhood IQ and white matter integrity in old age78. This suggests that, 

in addition to the likely direct contribution of white matter integrity to intelligence, higher 

intelligence might result in behaviours across the life-course that promote white matter 

integrity. Alternatively, it is possible that intelligence and white matter integrity have, from 

an early age, overlapping sets of genetic and/or environmental causes. 

In a resourceful utilization of the 79 healthy adults from Ref. 82, Li and colleagues 

combined DT-MRI tractography and MRI with graph analysis to construct a global brain 

network83. They found significant correlations between intelligence and parameters that 

reflect white matter network efficiency, indicating that not only the integrity, but also the 

organizational efficiency of white matter is important for higher intelligence. 

 

Efficient processing  

Early functional studies of intelligence used behavioural measures of reaction and inspection 

time12 and correlated them with various measures of cognitive ability. The well-established 
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finding is that more intelligent people react to and inspect visual and auditory stimuli faster. 

However, although such chronometric tasks are generally thought to be endophenotypes of 

intelligence, their better biological tractability has yet to be established. 

Nowadays, electroencepahalography (EEG), positron emisson tomography (PET), 

regional cerebral blood flow (rCBF), and functional MRI (fMRI) have been used extensively 

on individuals performing intelligence-related tasks such as matrix reasoning, mental 

rotation, or playing the video game Tetris. The indices of brain functional activity provided 

by these methods were interpreted as measures of neuronal efficiency and related to 

performance on the concurrent task and/or on intelligence tests taken before or afterwards. 

This literature has been reviewed in detail recently60,84, with two basic conclusions: first, 

similar to structural studies, functional studies support a distributed network perspective of 

intelligence, largely overlapping with the one shown in Figure 2 and discussed above60. 

Second, functional neuroimaging findings are generally consistent with the hypothesis that 

intelligent brains process information more efficiently (i.e., use fewer brain resources when 

performing cognitive tasks) than less intelligent brains85, with the proviso that the cognitive 

task be difficult enough to discriminate among brighter and less bright individuals, but not so 

difficult that even the brightest individuals have to recruit all their brain resources to solve it. 

When the latter is the case, less bright individuals usually give up, resulting in a positive 

correlation between brain resource usage and intelligence84. 

The notion that brain efficiency has a role in intelligence is also supported by a study by 

van den Heuvel and colleagues86. As did Li et al. for white matter networks,83 they used 

graph analysis to assess the efficiency of a global brain network constructed using a voxel-

wise approach based on fMRI data obtained at rest. They found significant links between 

functional efficiency and IQ, especially in frontal and parietal regions. This is consistent with 

another fMRI study which reported significant correlations between IQ and resting-state 
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functional connectivity of an ‘exploratory’ network involving the frontal and the parietal, 

occipital and limbic lobes87. The brain areas that were activated as an efficient network 

during resting periods (less activity in brighter individuals) in these two studies matched the 

frontal and parietal regions that were found to be activated in intelligent subjects under high 

cognitive demand60,84, indicating that brain activity distinguishes more and less intelligent 

people even when they are not cognitively challenged. 

 

Many neuronal roads to intelligence 

Where they have been tested, many studies on the neuroscience of intelligence show sex 

differences, some to a striking degree. For example, in males intelligence is more strongly 

correlated with fronto-parietal gray matter volume, whereas in females intelligence shows 

stronger correlations with white matter volume and gray matter in Broca’s area88. Cortical 

thickness in frontal regions correlates more strongly with intelligence in females, whereas 

temporal-occipital cortical thickness shows stronger correlations in males59. White matter 

integrity seems to be more important for intelligence in females than in males: males even 

sometimes show negative relations between intelligence and DT-MRI integrity measures of 

fronto-parietal fibers after puberty. This suggests that fewer but thicker and more tightly 

packed fibers possibly underlie cognitive functions in males than females89. Males also seem 

to be more neuronally efficient (i.e., they show less brain activation) than females during 

spatial cognitive tasks with intermediate difficulty levels, whereas females seem to be more 

neuronally efficient than males during verbal tasks of medium difficulty90. This is consistent 

with established sex differences showing better spatial abilities in males and better verbal 

abilities in females84,91. These patterns are interesting because males and females show 

marked differences in brain size54 and structure92-94, but negligible differences in general 
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intelligence95. Apparently, males and females can achieve similar levels of overall intellectual 

performance by using differently structured brains in different ways85. 

Sex differences are a peculiar form of individual differences, because the two sexes are 

the only qualitatively different ‘morphs’ of the human species96. This makes it easy to group 

subjects by this variable. However, it is likely that there is within-sex variation in how 

individuals use their brain. Two individuals with identical intelligence test scores might have 

achieved them via different neuronal routes because their brain structures might differ, 

because they might have different expertise and training effects or because they might have 

used different cognitive strategies63,84,97,98. Similarly, people seem to be able to compensate 

for cognitive deficits (or respond to cognitive challenges) by recruiting brain areas with 

hitherto only indirect relations to intelligence, especially frontal and corresponding 

contralateral areas.99 Such compensation results in a more distributed processing of 

information in the brain and thus more widespread activation patterns. This is of particular 

interest in (but probably not exclusive to) cognitive ageing99,100. Although certain brain 

structures and functional pathways seem more likely to be involved in intelligence than 

others, there is also considerable heterogeneity63,65,98, which might be related to individual 

differences in strategies when solving cognitive tasks101. Differences in strategy are also 

detectable in fMRI activation patterns102,103 that show genetic variation104.  Thus, there seems 

to be substantial room for differences in how individuals use their brains for intelligent 

performance. This should be explored in future studies. 

 

Conclusion 

Results from genetic and brain imaging studies performed to date can inform the design of 

the next phase of neuroscience-based studies of intelligence. Such studies should have large 

samples and a developmental perspective, include brain imaging and genetic testing, and be 
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driven by theories about the brain underpinnings of intelligence differences. They should be 

psychometrically-minded, which means that they should have subjects who are tested on 

adequate batteries of psychometric tests, and that the brain measurements should have due 

regard to reliability and validity of their measures. 

The first adequately-powered genome-wide studies of intelligence will appear soon. We 

anticipate that, like some other highly polygenic phenotypes such as height, there will be 

much missing heritability105. That is, we anticipate some small effects from a relatively large 

number of common genetic variants, but they will account for little of intelligence’s high 

heritability. This means that other sources of genetic variation will need scrutinising. Studies 

using genetic sequencing — which will detect rare genetic variants — and the study of copy 

number variations will be important. Results from these are predicted by the ‘rare variant –

common disease’ and mutation load hypotheses. Rare genetic variants might be population-

specific and thus might not replicate across samples. More studies that simultaneously carry 

out genetics and brain imaging will be useful. There is a welcome trend towards larger 

samples in neuroimaging and genetics, allowing for much more definite results than those 

that make up most of the literature so far. However, it is still important to avoid statistical 

pitfalls; both genetic and imaging studies have been very prone to type I and type II statistical 

errors. 

In addition to studies of the association between intelligence and genetic structure 

differences, there will also be a need to examine individual differences in epigenetic changes 

(e.g. DNA methylation), gene expression, proteomics, metabolomics, and gene-gene and 

gene-environment interactions that might account for individual differences in intelligence. 

Studies of the biological functioning of intelligence must recognise that people do not 

differ only in their general cognitive ability, but most likely also in how they use their brain 

to reach  particular levels of performance. To understand the neuroscience of intelligence, we 
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need to learn more about how brains can be used differently for the same tasks, both within 

and across age and sex groups. 

We have little understanding of how what we recognize as intelligence develops. 

Intelligence is clearly some combination of ability to ‘figure things out on the spot’ and the 

ability to retain and repeat things that have been figured out in the past. Neuroimaging could 

help by comparing brain structure and activity in people with and without experience in 

performing cognitive test problems such as Raven’s non-verbal reasoning. Studies of the 

biology of intelligence will be most useful if they have a developmental perspective, running 

from infancy to old age; not least because there is both continuity and change in the 

individual differences across most of the lifecourse. 

Performance on all of the cognitive tasks and abilities studied in neuroscience and 

genetics are confounded by general intelligence. Therefore, if researchers are primarily 

interested in the brain areas or genes for a specific cognitive ability, it might be helpful to 

statistically control for g, which should isolate as well as possible what is unique to a single 

task (see Ref. 98). 

Some people’s brains are more efficient than others. The biological foundations of these 

differences are of great interest to basic and applied neuroscience. There are already some 

well-replicated general findings. The differential neuroscience of human intelligence thus has 

a strong mandate and a firm foundation from which to proceed. 
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Box 1 Definitions of intelligence 

An early and seemingly circular definition of intelligence came from the American 

psychologist E. G. Boring in 1923, when he stated that, “Intelligence is what the tests test”106. 

Although this definition is often criticised by detractors of IQ-type tests, it was taken out of 

context. The apparently dismissive comment came after a summary of strong empirical 

findings — for example, that the tests showed marked individual differences, that the 

differences were stable over time, that children developed greater intelligence over time but 

tended to maintain the same rank order. The sentence immediately following the famous 

quote was that the famously glib definition, “is only the point of departure for a rigorous 

discussion of the tests.” Boring was simply stating that the psychometric data had to be good 

and then linked to other evidence about the origins and outcomes of intelligence. 

A broader definition, agreed by 52 prominent researchers on intelligence, ran as 

follows. “Intelligence is a very general capability that, among other things, involves the 

ability to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn 

quickly and learn from experience. It is not merely book learning, a narrow academic skill, or 

test-taking smarts. Rather, it reflects a broader and deeper capability for comprehending our 

surroundings—‘catching on,’ ‘making sense’ of things, or ‘figuring out’ what to do. 

Intelligence, so defined, can be measured, and intelligence tests measure it well”107. 

Intelligence tests generally consist either of complex tasks that involve different aspects 

of reasoning, such as the Ravens Progressive Matrices, or batteries of tasks that require 

different kinds of cognitive performance such as providing definitions of words and 

visualizing from two-dimensional diagrams how three-dimensional objects would look when 

folded. Two properties of these kinds of tests are important. First, all intelligence tests, 

whether of single, relatively unitary tasks or complex, multi-faceted tasks, are correlated and 

tend to generate a strong general factor when applied to a large sample of people. Second, 
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whatever our definition, intelligence should be assessed by its construct validity, meaning the 

accumulated evidence that the tests measure something of relevance: evidence on practical 

outcomes of intelligence differences, consistency of psychometric structure, and relations 

with biological structures and processes. By that criterion, intelligence is a core and valid 

facet of individual differences among humans. As this article shows, irrespective of definition 

and test used, data from brain imaging studies and genetic studies show strong correlates with 

results from intelligence tests, providing validity for psychometric intelligence measures, 

contrary to criticisms that such test scores (as often expressed as IQ) are meaningless 

numbers. 
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Box 2. Controversies in intelligence, and criticisms of g 

 

Controversies involving intelligence. Two types of controversy surround the measurement of 

intelligence: in some cases, empirical intelligence-related data exist but have been missed, 

unappreciated, ignored or even rejected; in other cases, no definitive intelligence-related data 

are yet available. Examples of the first type include arguments about whether there are 

‘multiple intelligences’; whether genetic factors contribute to intelligence differences; and 

whether brain size is related to intelligence. The data on these issues are substantial and there 

are few to no contradictory data. Examples of the second type include debates about whether 

and to what extent intelligence tests may be biased for or against specific groups; the 

existence and causes of sex and ethnic differences in intelligence; the causes of the well-

known correlations among intelligence, education and social class; and the cause of the 

population-level increases in IQ test scores throughout the 20th century in Western societies 

(known as the Flynn effect). The tools (such as tests of measurement invariance) that are 

currently available to address these issues are inadequate to resolve them. This is because we 

can at present measure only intelligent performance, which develops over time. Its 

development in an individual is thus embedded in the individual’s environment of origin. 

 

Criticisms of g. g has been criticised on two major grounds. First, several theories have 

proposed that domains of cognitive ability might be independent. The best known of these are 

Thurstone’s ‘Primary Mental Abilities’ (PMA), and Gardner’s ‘Multiple Intelligences’ (MI). 

However, these theories have not held up well. Even Thurstone’s own PMA data contained a 

strong g factor108. Gardner has intentionally avoided empirical tests of his theory, but those 

that have been made show most of his MI to be correlated too109; and some of the MI, such as 

kinaesthetic ability, are not what psychologists would think of as ‘cognitive’ abilities at all. 
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Second, Cattell and Horn suggested that, however robust it may be statistically, g might have 

no real significance in the brain because the g’s from different ability test batteries could be 

very different, resulting in very different rank orders among individuals110. This is incorrect. 

As long as test batteries are reasonably diverse, g factors from different test batteries are 

almost perfectly correlated111. That is, as long as one administers enough tests, the general 

intelligence from one group of tests will agree closely in ranking with the general intelligence 

factor from any other group of tests. 

For more than a century it has been popular to wish g away, but the near-universal 

positive covariation among cognitive tests is a fact. The theories that do not accommodate 

this finding — such as those of Thurstone, Guilford, Sternberg, and Gardner — fail the most 

basic empirical tests. Prominent accounts arguing that g is a necessary artefact of the 

statistical analyses — such as principal components analysis — are incorrect112. But there are 

more subtle and effective ways in which g has been questioned than the mere denial of the 

positive manifold, two of which deserve attention. 

First, Spearman had a continuous and often heated debate with Godfrey Thomson. 

Thomson suggested that the positive associations among cognitive tests might be explained 

not by individual differences in a single property — whatever g represented, such as the 

‘mental energy’ proposed by Spearman himself — but by individual differences in the 

number or efficiency of ‘bonds’ in people’s brains. Thomson’s idea, borrowed from his 

friend R. L. Thorndike, was that brains were composed of a very large number of biological 

units (bonds) and that when a person attempted to solve mental test items, each item sampled 

a number of these bonds. The degree to which tests overlapped in the bonds they sampled 

accounted for their correlation. Thomson could not specify what the brain’s units were — 

though guesses such as “neural arcs” imply effective connections — but the theory implied 

that intelligence differences could lie in the number and/or efficiency of the bonds. Recent re-
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evaluation of Thomson’s ideas has found that his and Spearman’s models of intelligence can 

both account for the psychometric patterning of tests’ intercorrelations, and that current 

neuroimaging, genetic, and psychophysiological evidence cannot distinguish between 

them113. A computationally and conceptually modern version of this argument based on the 

supposition of mutual interactions between cognitive processes has also been proposed 

recently114. 

Second, one must recognise the success of at least one aspect of the Cattell-Horn theory 

of fluid and crystallised intelligence110. Fluid intelligence (gf) is intelligence-as-process, and 

typically is assessed using tests which require on-the-spot processing. Crystallised 

intelligence (gc) is intelligence-as-product, and is typically measured using tests which assess 

stored knowledge, such as vocabulary and general facts. Though the two are highly 

correlated, there is a marked difference in the extent to which they change with age fluid 

intelligence changing like other physical abilities whereas crystallised ability shows little age-

related decline. A neuroscientific account of intelligence differences must explain these 

differential trajectories. 
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Box 3. Measuring genetic influences on intelligence 

Many studies investigating genetic and environmental contributions to intelligence have been 

performed using monozygotic and dizygotic twins, but studies have also made use of samples 

of adoptive and biological siblings, and parents and their adoptive and biological offspring, 

with very consistent results across different types of relationship groups115. There have also 

been systematic reviews of the genetic contribution to general intelligence116. The basic idea 

of such studies is that genetic influences are indicated when more closely biologically related 

pairs of individuals are more similar for the trait of interest than less closely biologically 

related pairs. Shared environmental influences are indicated when there is more similarity 

between pairs of family members than would be indicated by their biological relationship. 

Kinship studies to determine the proportions of variance that can be attributed to 

genetic and environmental influences rely on the accuracy of some crucial assumptions. From 

a quantitative genetic perspective, arguably the most fundamental of these is the assumption 

that genetic and environmental influences are independent, but this assumption is often false. 

An example relevant to the development of intelligence is the association of socioeconomic 

status (SES) with intelligence. There is some evidence that, in childhood, genetic influences 

on IQ (but not on socioeconomic status) are relatively stronger in higher SES environments117 

(but see Ref 118), possibly indicating that some genes involved in IQ tend to be expressed only 

in higher SES environments (gene-environment interaction). But IQ and SES are generally 

correlated119, suggesting that one’s intelligence can influence one’s SES or vice versa. 

Moreover, parents pass both their genes for intelligence and the associated SES environment 

on to their offspring (gene-environment correlation). Understanding how genes are involved 

in this correlation would help to interpret the biological meaning of intelligence’s high 

heritability. Of note, the issue of gene-environment correlation has not been addressed in the 
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interaction studies conducted to date. Statistical designs exist to capture gene-environment 

interactions and correlations simultaneously in behaviour genetic analyses120, but the 

techniques currently available are not applicable to situations such as childhood SES, which 

is identical for twin offspring. 
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Box 4. Multivariate genetic studies 

The methods used to estimate the proportions of variance that are attributable to genetic and 

environmental influences on one trait can be extended to estimate the genetic and 

environmental influences on the covariances among multiple traits. For example, is the 

correlation between intelligence and brain size due to genes that influence both traits, or is it 

due to environmental conditions that affect both? To what degree do the genetic and/or 

environmental influences on brain size also contribute to intelligence? Developing answers to 

these questions relies on comparing the cross-relative covariance between the two traits. That 

is, we might measure the degree to which intelligence in one member of each twin pair in a 

sample covaries with the brain size in the other member of each twin pair, and compare the 

results in mono- and dizygotic twins. Genetic influences common to intelligence and brain 

size would be indicated when there is greater cross-pair similarity in more closely 

biologically related pairs, and shared environmental influences would be indicated when 

there is greater similarity between pairs of family members than would be indicated by their 

biological relationship. 

 Such comparisons result in two kinds of statistics. Genetic and environmental 

correlations, like ordinary correlations, range from -1 to +1 and document the extent to which 

genetic and/or environmental influences on one trait, such as brain size, also influence the 

other trait, such as intelligence. Second, we can also estimate the extent to which the 

observed correlation between, for example, brain size and intelligence can be attributed to 

genetic and/or environmental influences. Results from one study indicated that various 

measures of brain size were correlated .24 to .29 with various measures of intelligence, and 

genetic influences on the measures of brain size were correlated .24 to .38 with genetic 

influences on intelligence. All of the observed correlation, however, could be attributed to 

genetic influences32. This emphasizes that genetic and environmental correlations are 
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independent of the extent of genetic and/or environmental influences on the traits. One trait 

can be under strong genetic influence but those genetic influences may not be related to those 

on another trait, even if that trait is also under strong genetic influences, and vice versa. 

 Genetic and environmental correlations, like estimates of genetic and environmental 

influences, are statistical measures that quantify covariance and variance. They thus cannot 

identify the specific genes involved, and provide little information about whether we should 

expect to be able to find any specific genes of measurable effect. Moreover, genetic and 

environmental correlations do not specify causes. It is certainly possible that a common set of 

genes may contribute directly to both traits, but genetic correlations may arise for other 

reasons as well. In particular, when one genetically influenced trait affects the development 

of another trait by influencing the (gene’s, brain’s or individual’s) environment, those genetic 

influences will also contribute to the genetic influences on the second trait. And specific 

genes that are of major importance to one trait may be of only minor importance to the other. 
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Figure 1.  The hierarchy of intelligence differences 

 
Figure 1a is constructed from analyses conducted by Salthouse121. They were based on 33 of his 

own studies, with almost 7000 subjects, who were aged from 18 to 95. The small squares 

represent 16 different cognitive ability tests. The 16 tests coalesce into five factors representing 

broad domains of mental ability. Note that each test has a high loading on one group factor; the 

numbers may be thought of as the correlation between the individual test and the higher-order 

latent trait/ability domain. It is important to note that all five domains have high associations 

with the general factor. Correlations among the broad domains are high (not shown), refuting the 

idea that there might be independent ‘primary mental abilities’ at this broad domain level. The 

fact that the factors representing broad domains are strongly associated with g means that much 

of the variance apparently arriving at the 16 individual tests from the broad domains actually 

comes from g. Take the example of Test Number 1. Its correlation with the ‘Reasoning’ domain 

is 0.89. But the ‘perceptual organisation’ domain has a loading of .97 on g, which is shared with 

all four other cognitive domains. By simply squaring the correlations (or loadings), which is not 

always appropriate, one finds that about 74% of the variance in Test Number 1 is due to g and 

only about 5% due to the domain of ‘Reasoning’.  

 

Figure 1b shows that the hierarchy also applies importantly to cognitive ageing. The main effect 

of age is on g, with additional, cognitive domain-specific influences on memory and processing 

speed121. Note the positive direct effect on vocabulary. Age effects with effect sizes below 0.1 

are not shown, nor are effects of gender, education and health. There is a direct positive effect of 

age on vocabulary. This is tempered by the negative effect of age on g, with which vocabulary is 

highly associated, and results in an overall modest positive effect of age on vocabulary. 
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Such a hierarchy of intelligence differences is found in almost all of the hundreds of large 

datasets that have applied multiple cognitive tests to large samples11. The hierarchy is 

important in genetic studies, because the major additive genetic influence is on g, and the 

major source of genetic variance on the individual tests is typically via g20. This finding holds 

into old age where, even at age 80, the additive genetic contribution to g is still high, and 

where broad cognitive domains still have very high correlations with g122. The domain with 

the strongest non-g genetic influence is memory, though even with memory the largest source 

of genetic variance comes from the genetic influence on g. Figures based on data from REF. 

120. 
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Figure 2.  The loci of intelligence differences 

 
Based on a review of all the structural and functional neuroimaging literature that was 

available to them at that time, Jung & Haier proposed the Parieto-Frontal Integration Theory 

of intelligence (P-FIT), which is arguably the best available description of how intelligence is 

distributed in the brain. The figure shows Brodmann Areas (BA) involved in intelligence as 

well as the arcuate fasciculus (arrow) as a promising candidate for a white matter tract that 

connects the involved brain regions. BA’s in darker circles indicate predominantly left-

hemispheric correlations and lighter circles predominantly right-hemispheric correlations 

with intelligence. Figure modified, with permission, from REF 60  © Cambridge University 

Press 2006 
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Glossary terms 
 
Raven’s Progressive Matrices test 
An established non-verbal test of inductive reasoning that is often regarded as a good marker 
of the general factor of intelligence. 
 
Non-verbal ability 
A broad subfactor of intelligence defined by tests that do not rely on verbal stimuli or 
responses. The term perceptual-organizational ability is often used synonymously. 
 
Mutation-selection balance 
An evolutionary genetic explanation for the maintenance of genetic variance in a trait, based 
on an equilibrium between novel detrimental mutations and purifying selection. 
 
Small world network 
A network characterised by a high levels of local clustering among nodes and short paths that 
globally link all nodes, resulting in all nodes being linked through relatively few intermediate 
steps despite few connections per node. 
 
Long association fibers 
A set of axonal tracks connecting distant brain areas within the same hemisphere. 
 
Network efficiency 
Short mean path lengths for parallel information transfer, as for example provided by a small 
world network structure. 
 
Endophenotypes 
Quantifiable phenotypes with assumed intermediate roles in the pathway from genes to 
complex phenotypes, which are supposed to be easier to understand biologically and 
genetically. 
 
Functional connectivity 
Correlations between the activation patterns of different brain areas. 
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