87 research outputs found

    Workgroup Report: Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity into International Hazard and Risk Assessment Strategies

    Get PDF
    This is the report of the first workshop on Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity (DNT) Testing into International Hazard and Risk Assessment Strategies, held in Ispra, Italy, on 19–21 April 2005. The workshop was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) and jointly organized by ECVAM, the European Chemical Industry Council, and the Johns Hopkins University Center for Alternatives to Animal Testing. The primary aim of the workshop was to identify and catalog potential methods that could be used to assess how data from in vitro alternative methods could help to predict and identify DNT hazards. Working groups focused on two different aspects: a) details on the science available in the field of DNT, including discussions on the models available to capture the critical DNT mechanisms and processes, and b) policy and strategy aspects to assess the integration of alternative methods in a regulatory framework. This report summarizes these discussions and details the recommendations and priorities for future work

    Rapamycin Combined with Anti-CD45RB mAb and IL-10 or with G-CSF Induces Tolerance in a Stringent Mouse Model of Islet Transplantation

    Get PDF
    Background: A large pool of preexisting alloreactive effector T cells can cause allogeneic graft rejection following transplantation. However, it is possible to induce transplant tolerance by altering the balance between effector and regulatory T (Treg) cells. Among the various Treg-cell types, Foxp3 +Treg and IL-10-producing T regulatory type 1 (Tr1) cells have frequently been associated with tolerance following transplantation in both mice and humans. Previously, we demonstrated that rapamycin+IL-10 promotes Tr1-cell-associated tolerance in Balb/c mice transplanted with C57BL/6 pancreatic islets. However, this same treatment was unsuccessful in C57BL/6 mice transplanted with Balb/c islets (classified as a stringent transplant model). We accordingly designed a protocol that would be effective in the latter transplant model by simultaneously depleting effector T cells and fostering production of Treg cells. We additionally developed and tested a clinically translatable protocol that used no depleting agent. Methodology/Principal Findings: Diabetic C57BL/6 mice were transplanted with Balb/c pancreatic islets. Recipient mice transiently treated with anti-CD45RB mAb+rapamycin+IL-10 developed antigen-specific tolerance. During treatment, Foxp3 +Treg cells were momentarily enriched in the blood, followed by accumulation in the graft and draining lymph node, whereas CD4 +IL-10 +IL-4 - T (i.e., Tr1) cells localized in the spleen. In long-term tolerant mice, only CD4 +IL-10 +IL-4 - T cells remained enriched in the spleen and IL-10 was key in the maintenance of tolerance. Alternatively, recipient mice were treated with two compounds routinely used in the clinic (namely, rapamycin and G-CSF); this drug combination promoted tolerance associated with CD4 +IL-10 +IL-4 - T cells. Conclusions/Significance: The anti-CD45RB mAb+rapamycin+IL-10 combined protocol promotes a state of tolerance that is IL-10 dependent. Moreover, the combination of rapamycin+G-CSF induces tolerance and such treatment could be readily translatable into the clinic. © 2011 Gagliani et al

    Enhanced Neointima Formation Following Arterial Injury in Immune Deficient Rag-1−/− Mice Is Attenuated by Adoptive Transfer of CD8+ T cells

    Get PDF
    T cells modulate neointima formation after arterial injury but the specific T cell population that is activated in response to arterial injury remains unknown. The objective of the study was to identify the T cell populations that are activated and modulate neointimal thickening after arterial injury in mice. Arterial injury in wild type C57Bl6 mice resulted in T cell activation characterized by increased CD4+CD44hi and CD8+CD44hi T cells in the lymph nodes and spleens. Splenic CD8+CD25+ T cells and CD8+CD28+ T cells, but not CD4+CD25+ and CD4+CD28+ T cells, were also significantly increased. Adoptive cell transfer of CD4+ or CD8+ T cells from donor CD8−/− or CD4−/− mice, respectively, to immune-deficient Rag-1−/− mice was performed to determine the T cell subtype that inhibits neointima formation after arterial injury. Rag-1−/− mice that received CD8+ T cells had significantly reduced neointima formation compared with Rag-1−/− mice without cell transfer. CD4+ T cell transfer did not reduce neointima formation. CD8+ T cells from CD4−/− mice had cytotoxic activity against syngeneic smooth muscle cells in vitro. The study shows that although both CD8+ T cells and CD4+ T cells are activated in response to arterial injury, adoptive cell transfer identifies CD8+ T cells as the specific and selective cell type involved in inhibiting neointima formation

    The Liver Plays a Major Role in Clearance and Destruction of Blood Trypomastigotes in Trypanosoma cruzi Chronically Infected Mice

    Get PDF
    Intravenous challenge with Trypanosoma cruzi can be used to investigate the process and consequences of blood parasite clearance in experimental Chagas disease. One hour after intravenous challenge of chronically infected mice with 5×106 trypomastigotes, the liver constituted a major site of parasite accumulation, as revealed by PCR. Intact parasites and/or parasite remnants were visualized at this time point scattered in the liver parenchyma. Moreover, at this time, many of liver-cleared parasites were viable, as estimated by the frequency of positive cultures, which considerably diminished after 48 h. Following clearance, the number of infiltrating cells in the hepatic tissue notably increased: initially (at 24 h) as diffuse infiltrates affecting the whole parenchyma, and at 48 h, in the form of large focal infiltrates in both the parenchyma and perivascular spaces. Phenotypic characterization of liver-infiltrating cells 24 h after challenge revealed an increase in Mac1+, CD8+ and CD4+ cells, followed by natural killer (NK) cells. As evidence that liver-infiltrating CD4+ and CD8+ cells were activated, increased frequencies of CD69+CD8+, CD69+CD4+ and CD25+CD122+CD4+ cells were observed at 24 and 48 h after challenge, and of CD25−CD122+CD4+ cells at 48 h. The major role of CD4+ cells in liver protection was suggested by data showing a very high frequency of interferon (IFN)-γ-producing CD4+ cells 24 h after challenge. In contrast, liver CD8+ cells produced little IFN-γ, even though they showed an enhanced potential for secreting this cytokine, as revealed by in vitro T cell receptor (TCR) stimulation. Confirming the effectiveness of the liver immune response in blood parasite control during the chronic phase of infection, no live parasites were detected in this organ 7 days after challenge

    Treatment with interleukin-2 in malignant pleural mesothelioma: immunological and angiogenetic assessment and prognostic impact

    Get PDF
    BACKGROUND: Administration of interleukin-2 (IL-2) has shown some effects on malignant pleural mesothelioma (MPM) tumour regression. The purpose of this study was to investigate the ability of IL-2 to modify immunological effector cells and angiogenesis in MPM patients and their prognostic value. METHODS: Tumour-infiltrating lymphocytes (CD4, CD8, Foxp3), mast cells (MCs) (tryptase and chymase), microvessel count (MVC) and VEGF were determined by immunohistochemistry in two series of MPM patients: 60 patients treated with intra-pleural preoperative IL-2 and 33 patients untreated. RESULTS: Tryptase MCs, and CD8 and Foxp3 lymphocytes were significantly increased in the IL-2-treated group, whereas MVC was significantly lower in the same group. Moreover, in the IL-2-treated group, greater tryptase + MCs and greater Foxp3 lymphocytes were associated with improved and poorer clinical outcomes, respectively. Notably, when these two immunological parameters were combined, they predicted outcomes more effectively. CONCLUSIONS: This study showed that IL-2 treatment leads to a significant increase of immunological parameters, concomitantly with a reduction in vasculature, providing new insight into the cancer mechanisms mediated by IL-2. Moreover, these results suggest that tryptase-positive MCs and Foxp3 + lymphocytes predict clinical outcomes in IL-2-treated patients, highlighting the critical role of the inflammatory response in mesothelioma cancer progression. British Journal of Cancer (2009) 101, 1869-1875. doi:10.1038/sj.bjc.6605438 www.bjcancer.com (C) 2009 Cancer Research U

    Regulatory T cells and their role in rheumatic diseases: a potential target for novel therapeutic development

    Get PDF
    Regulatory T cells have an important role in limiting immune reactions and are essential regulators of self-tolerance. Among them, CD4+CD25high regulatory T cells are the best-described subset. In this article, we summarize current knowledge on the phenotype, function, and development of CD4+CD25high regulatory T cells. We also review the literature on the role of these T cells in rheumatic diseases and discuss the potential for their use in immunotherapy

    B cells with immune-regulating function in transplantation

    No full text
    In transplantation, the contribution of B cells to the rejection or acceptance of the allograft is a topic of major interest. The presence of donor-specific antibodies in transplant recipients is often associated with decreased graft function and rejection, clearly indicating a pathogenetic role of B cells in transplantation. However, data from studies in humans and rodents suggest that under certain conditions, B cells have the capacity to control or regulate the immune response to a transplanted organ. Although a great deal of attention has been focused on B cells in human and murine models of autoimmunity, our understanding of the role of these cells in transplantation is limited at present. Indeed, results in this setting are controversial and seem to depend on the model system used or the clinical situation studied. Here, we review the current understanding of the various phenotypes and roles that have been associated with immune-regulating B cells. We also discuss the mechanisms employed by subsets of these regulatory B cells to control the immune response in transplant recipients and in animal models of transplantation. © 2014 Macmillan Publishers Limited. All rights reserved

    B cells with immune-regulating function in transplantation.

    No full text
    In transplantation, the contribution of B cells to the rejection or acceptance of the allograft is a topic of major interest. The presence of donor-specific antibodies in transplant recipients is often associated with decreased graft function and rejection, clearly indicating a pathogenetic role of B cells in transplantation. However, data from studies in humans and rodents suggest that under certain conditions, B cells have the capacity to control or regulate the immune response to a transplanted organ. Although a great deal of attention has been focused on B cells in human and murine models of autoimmunity, our understanding of the role of these cells in transplantation is limited at present. Indeed, results in this setting are controversial and seem to depend on the model system used or the clinical situation studied. Here, we review the current understanding of the various phenotypes and roles that have been associated with immune-regulating B cells. We also discuss the mechanisms employed by subsets of these regulatory B cells to control the immune response in transplant recipients and in animal models of transplantation
    corecore