1,077 research outputs found

    Tools for the IDL widget set within the X-windows environment

    Get PDF
    New tools using the IDL widget set are presented. In particular, a utility allowing the easy creation and update of slide presentations, XSlideManager, is explained in detail and examples of its application are shown. In addition to XSlideManager, other mini-utilities are discussed. These various pieces of software follow the philosophy of the X-Windows distribution system and are made available to anyone within the Internet network. Acquisition procedures through anonymous ftp are clearly explained

    Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships

    Get PDF
    <p><b>Abstract</b></p> <p>Background</p> <p>Nonribosomal peptide synthetases (NRPSs) are multimodular enzymes, found in fungi and bacteria, which biosynthesize peptides without the aid of ribosomes. Although their metabolite products have been the subject of intense investigation due to their life-saving roles as medicinals and injurious roles as mycotoxins and virulence factors, little is known of the phylogenetic relationships of the corresponding NRPSs or whether they can be ranked into subgroups of common function. We identified genes (<it>NPS</it>) encoding NRPS and NRPS-like proteins in 38 fungal genomes and undertook phylogenomic analyses in order to identify fungal NRPS subfamilies, assess taxonomic distribution, evaluate levels of conservation across subfamilies, and address mechanisms of evolution of multimodular NRPSs. We also characterized relationships of fungal NRPSs, a representative sampling of bacterial NRPSs, and related adenylating enzymes, including α-aminoadipate reductases (AARs) involved in lysine biosynthesis in fungi.</p> <p>Results</p> <p>Phylogenomic analysis identified nine major subfamilies of fungal NRPSs which fell into two main groups: one corresponds to <it>NPS </it>genes encoding primarily mono/bi-modular enzymes which grouped with bacterial NRPSs and the other includes genes encoding primarily multimodular and exclusively fungal NRPSs. AARs shared a closer phylogenetic relationship to NRPSs than to other acyl-adenylating enzymes. Phylogenetic analyses and taxonomic distribution suggest that several mono/bi-modular subfamilies arose either prior to, or early in, the evolution of fungi, while two multimodular groups appear restricted to and expanded in fungi. The older mono/bi-modular subfamilies show conserved domain architectures suggestive of functional conservation, while multimodular NRPSs, particularly those unique to euascomycetes, show a diversity of architectures and of genetic mechanisms generating this diversity.</p> <p>Conclusions</p> <p>This work is the first to characterize subfamilies of fungal NRPSs. Our analyses suggest that mono/bi-modular NRPSs have more ancient origins and more conserved domain architectures than most multimodular NRPSs. It also demonstrates that the α-aminoadipate reductases involved in lysine biosynthesis in fungi are closely related to mono/bi-modular NRPSs. Several groups of mono/bi-modular NRPS metabolites are predicted to play more pivotal roles in cellular metabolism than products of multimodular NRPSs. In contrast, multimodular subfamilies of NRPSs are of more recent origin, are restricted to fungi, show less stable domain architectures, and biosynthesize metabolites which perform more niche-specific functions than mono/bi-modular NRPS products. The euascomycete-only NRPS subfamily, in particular, shows evidence for extensive gain and loss of domains suggestive of the contribution of domain duplication and loss in responding to niche-specific pressures.</p

    A microbiological assay for host-specific fungal polyketide toxins

    Get PDF
    Genetic analysis of biosynthetic pathways for fungal secondary metabolites depends on availability of efficient and dependable assays for the end products. Some fungal plant pathogens produce secondary metabolites called host-specific toxins. Until recently, all bioassays for these toxins required use of whole plants or plant parts (Yoder 1981 In: Toxins in Plant Disease, Durbin ed., pp. 45-78). Since host-specific toxins, by definition, affect only plants that are susceptible to the toxin-producing fungus, other plants, animals and microorganisms are not sensitive and therefore cannot be used in bioassays

    Complementation of Cochliobolus heterostrophus trp- mutants produced by gene replacement

    Get PDF
    Transformation systems for most filamentous fungi are based on selection for drug resistance. This strategy is advantageous becasue wild-type strains, including isolates collected directly from the field, can be used as recipients in transformation experiements

    Versatile fungal transformation vectors carrying the selectable bar gene of Streptomyces hygroscopicus

    Get PDF
    Several selectable genes have been reported for construction of filamentous fungal transformation vectors. Among the most widely used is the hygB (also known as hph) gene of E. coli, which is generally useful because the corresponding selective agent (hygromycin B) is toxic to wild type strains of many fungi and because scoring of transformants is usually unambiguous. We, and others (Avalos et al. 1989 Curr. Genet. 16:369-372), have found that the same merits are evident using bialaphos (or phosphinothricin) as a selective agent and the bar gene (DeBlock et al. 1987 EMBO J. 6:2513-2518), which encodes phosphinothricin acetyltransferase, as a selectable marker. We report here the construction of three vectors which carry bar as the selectable gene and have easily exchangeable parts as well as convenient cloning sites

    Saisonnalité du transport de carbone organique dissous dans le ruisseau de l'Hermine, un bassin versant de tête de réseau du Bouclier Canadien

    Get PDF
    Nous avons étudié la variabilité saisonnière de la relation entre les fluctuations des concentrations en carbone organique dissous (COD) dans le ruisseau de l'Hermine (Québec, Canada) et les changements du débit (Q). Un total de 93 événements hydrologiques échantillonnés de 1994 à 2003 et regroupés sur une base saisonnière (hiver-printemps, été, automne) a été analysé. Le modèle de régression linéaire est utilisé afin de déterminer, pour chaque événement, la pente de la relation entre la concentration en COD dans le ruisseau et le débit. Ces pentes sont regroupées par saison et selon un seuil arbitraire de un qui permet de contraster les conditions hydrologiques et climatiques initiales des événements répertoriés. Les résultats du test de Kruskal-Wallis, visant la comparaison entre les événements de pentes supérieures et inférieures à un, montrent clairement la saisonnalité de la relation entre le COD et le débit. La saisonnalité de la relation COD/Q est ensuite mise en relation avec des variables climatiques et hydrologiques susceptibles de conditionner le transport du COD dans le bassin de l'Hermine. Les résultats montrent que les changements saisonniers des conditions climatiques et hydrologiques dans le bassin versant ont un impact significatif sur la relation entre le COD et le débit. Ainsi, le volume de précipitation tombé durant l'événement, la température moyenne de l'air et la température du sol régissent significativement (p =0,041; 0,001 et 0,009 respectivement) le transport du COD pour la période hiver-printemps. Les basses températures du sol et l'apport élevé en eau via les précipitations et la fonte favorisent le lessivage intense du COD soluble déjà limité par les basses températures. Au cours de l'été, l'état initial d'humidité du bassin est le principal facteur contrôlant l'évolution des concentrations de COD lors d'une crue; les fortes relations avec le pourcentage d'humidité des sols et le débit total 24 h avant l'événement le prouvent (p =0,039 et 0,0003 respectivement). Les changements les plus prononcés du COD surviennent, au cours de l'été, suite à une période prolongée de sécheresse. À l'automne, le transport du COD est influencé par le volume de précipitation tombé durant l'événement (p =0,031) et la température du sol (p =0,042). La modélisation de la relation COD/Q par les variables hydro-climatiques montre que 40% de la relation COD/Q s'explique par la température du sol durant la période d'hiver-printemps. Durant l'été, les conditions initiales d'humidité du bassin, traduites par le débit 24 h avant l'événement, expliquent à 51% la relation COD/Q. À l'automne, la relation COD/Q est gouvernée à 50% à la fois par le volume de précipitation tombé durant l'événement et la température du sol. L'analyse de ces données établit clairement la saisonnalité de la relation COD/Q et que des variables climatiques et hydrologiques permettent de quantifier ces fluctuations saisonnières.The terrestrial organic carbon (C) pool, estimated to 1.5 x 1015 kg C for the first meter of soil (Amundson, 2001), represents a major terrestrial elemental stock for which the recycling rate and the response to perturbations are still unknown. Under the present changing climatic conditions, C fluxes in terrestrial ecosystems could be significantly disturbed during the next decades. Indeed, the multi-annual changes in temperature and precipitation are likely to have a major impact on the net primary production and on organic matter decomposition in soils. This situation influences the production of the dissolved organic carbon (DOC) in soils, its transport to surface waters and hence, water quality. In this context, a better knowledge of the climatic and hydrologic factors influencing seasonal variations in DOC export is crucial to improve our understanding of the potential transformation of carbon stocks and fluxes in terrestrial ecosystems.The objectives of the present study were 1) to evaluate the seasonality in the relationship between dissolved organic carbon (DOC) concentrations in the stream and streamflow (Q) and 2) to quantify the impact of seasonal changes in climatic and hydrological conditions in the watershed on the DOC/Q relationship.The Hermine catchment is located about 80 km north of Montréal, Québec, Canada. An intermittent first-order stream drains the 5.1 ha catchment. Soils are Orthic and Gleyed Humo-Ferric and Ferro-Humic Podzols. The stream water was sampled daily, from 1994 to 2003, with an automatic sampler. The stream discharge was calculated from the water level above a 90º V-notch weir using a Global level sensor bubbler. Soil organic C content was analysed by the modified Walkley-Black method. Because of the high cost of DOC analysis for numerous samples, the DOC content was estimated by the relationship obtained between eight stream water samples analysed with a Shimadzu TOC analyser (Shimadzu, Kyoto, Japan) and the corresponding absorbance measured at 254 nm. From the initial year of the project, 1994, the regression used was Y=-0.05 + 32.60 X with an r2 value of 0.58 and a precision of 0.05 mg·L-1.The relationship between the DOC concentration and Q at the Hermine was positive and significant (p < 0.01) when all data were considered (n=1960). Because of the weakness of this relation (r2 =0.12), the stream samples, from 1994 to 2003, were seasonally split into 93 distinct hydrological events: 33 for winter-spring, 34 for summer and 26 for fall. A linear regression model was used to determine, for each event, the slope of the relationship between the DOC concentrations in the stream and Q. To contrast the antecedent conditions of the Hermine watershed, the events from a given season were divided into two groups. The Kruskal-Wallis test was then used to establish the link between the slope of the DOC/Q relationships on the one hand, and the environmental watershed conditions on the other hand: the climatic variables (volume of precipitation during event, mean air and soil temperatures) and the hydrological variables (stream discharge 24 h before the event, soil moisture, and ground water level).The DOC concentrations in the stream varied on an annual, a seasonal and an event basis. For the period 1994 to 2003, the annual mean concentrations, calculated from daily samples, varied from 2.0 to 2.5 mg DOC·L-1. On a seasonal basis, mean daily DOC was higher during the summer and the fall (2.9 and 2.8 mg DOC·L-1 respectively), and lower in the winter-spring (2.1 mg DOC·L-1). The relation between DOC concentrations and Q fluctuated as a function of the seasonal evolution of climatic and hydrological conditions in the Hermine catchment. For winter-spring events, 79% of the events had a DOC/Q slope lower than one. This period was characterised by high streamflow levels and high total DOC fluxes even though the daily mean DOC concentrations were low (2.1 mg DOC·L-1). The volume of precipitation during the event (p =0.041), the mean air temperature (p =0.001) and the soil temperature (p =0.009) were significantly related to the difference between events with slopes lower and higher than one. Indeed the slope of the relation increases when soil temperatures are elevated. When the temperatures are higher, DOC export increases and subsurface flow in soil horizon is enriched in DOC. Under colder temperature, the DOC production is limited and the soluble organic substances stored in soils are leached out the catchment with the high volume of precipitation and with the water coming from the snowmelt. For the summer period, there were 20 events with slopes greater than one against 14 with slopes lower than one. The soil humidity (p =0.039) and the total streamflow 24 h before the event (p=0.0003), were the two variables that significantly distinguished both slope groups. Rapid changes in DOC concentration occur during hydrological events following a long drought period. Under dry conditions, the subsurface flow in soil horizons rich in organic matter, the re-hydration of bed sediments and the hydrophobic behaviour of soil particles can all contribute to the export of very high DOC concentrations, even during small events. The relationships between DOC and Q, for the fall season, were significantly influenced by the volume of precipitation during the event (p =0.031) and the mean soil temperature (p =0.042). The events with the lower slopes showed the highest volume of precipitation during event and the lowest soil temperature. For these events occurring under wet conditions, the water originates essentially from the B and C horizons, and DOC fluctuations are then limited because of the low concentrations of the DOC in these horizons (anionic sorption of soluble organic substances by iron oxides).Best-fit from multiple regressions indicated that 40% of the link between DOC and Q was explained by the soil temperature during the winter-spring period (p =0.0001). For summer, the streamflow 24 h before events accounted for 51% of the variation in DOC/Q relationships (p =0.00001). For the fall period, the volume of precipitation during event and the soil temperature both contributed equally to the DOC/Q relationships (p =0.001). From these results, obtained from a multi-year project, it is clear that the relation between DOC and Q is a function of the variability in the climatic and hydrological watershed conditions. In a context of global warming, it is possible that warmer air temperatures have an effect on soil temperature. Thus, during winter-spring and fall periods, the duration and the intensity of the DOC production in soils will increase and the export of DOC from the watershed to other surface water system could become more important under equivalent or higher streamflow. Higher air temperature also means higher evapotranspiration by the forest during the summer period, and consequently dryer watershed conditions. A low streamflow and a low soil humidity level could be expected and then, brief rain events will sporadically flush the soluble organic carbon accumulated in the soil. The DOC export would be insignificant for that period, but the DOC would reach the highest annual level. The new knowledge on the DOC/Q relationships, at the hydrological event scale, will be added to the accumulated data on the possible effects of global warming on the carbon cycle in forested ecosystems

    Split-Marker Recombination for Efficient Targeted Deletion of Fungal Genes

    Get PDF
    A commonly used method for fungal gene deletion is introduction of linear DNA consisting of a selectable marker gene flanked on both sides by short stretches of DNA that target a gene of interest (Wirsel et al 1996 Curr. Genet 29:241-249). Gene deletion in Cochliobolus heterostrophus and Gibberella zeae occurs efficiently with this approach. To facilitate deletion construct synthesis, we have applied the split-marker” deletion strategy previously developed for Saccharomyces cerevisiae (Fairhead et al. 1996 Yeast 12:1439-57; Fairhead et al. 1998 Gene 223:33-46). Here, we describe both fusion PCR-based and plasmid-based deletion methods using this strategy with PEG-mediated protoplast transformation (Turgeon et al, 1985 Mol. Gen. Genet. 201:450-453). These methods are predicted to work well with any transformable fungus that undergoes homologous recombination between chromosomal and introduced DNA sequences

    Linkage among melanin biosynthetic mutations in Cochliobolus heterostrophus

    Get PDF
    Melanin is synthesized by C. heterostrophus from acetate via pentaketide and several dihydroxynaphthalene intermediates (Tanaka et al. 1991 Mycol. Res. 95:49-56), as it is for certain other fungi (Bell and Wheeler 1986 Ann. Rev. Phytopathol. 24:411-451; Kubo et al. 1989 Exp. Mycol 13:77-84; Chumley and Valent 1990 Mol. Plant-Microbe Int. 3:135-143). Previously, five melanin deficient mutants of C. heterostrophus were analyzed by Tanaka et al. (Mycol. Res. 95:49-56), who were unable to establish complete linkage relationships because three of the mutations (alb1, alb3, and brn1) showed no recombination when crossed to each other, and were unlinked to the other two (sal1 and pgr1), which mapped about 12 cM apart. A sixth color mutation, scr1, represented a third linkage group, but there was no evidence of its involvement in melanin biosynthesis. Independently, we have recovered six melanin-deficient mutants, one of which (alb1, Leach et al. 1982 J. Gen. Microbiol. 128:1719-1729) was included in the study of Tanaka et al. and maps to chromosome 1 on the C. heterostrophus RFLP map (Tzeng et al. 1992 Genetics 130:81-96). We report here that our remaining five melanin-deficient mutants [crm1 (light cream), crm2 (dark cream), brn1 (brown), rsy1 (rose), and probably gra3 (gray)] are linked to, but are not allelic with, alb1 (white) and constitute a gene cluster on chromosome

    P450 3A activity and cyclosporine dosing in kidney and heart transplant recipients

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109917/1/cptclpt1994135.pd
    corecore