1,085 research outputs found

    Approximations of singular vertex couplings in quantum graphs

    Full text link
    We discuss approximations of the vertex coupling on a star-shaped quantum graph of nn edges in the singular case when the wave functions are not continuous at the vertex and no edge-permutation symmetry is present. It is shown that the Cheon-Shigehara technique using δ\delta interactions with nonlinearly scaled couplings yields a 2n2n-parameter family of boundary conditions in the sense of norm resolvent topology. Moreover, using graphs with additional edges one can approximate the (n+12){n+1\choose 2}-parameter family of all time-reversal invariant couplings.Comment: LaTeX source file, 33 pages, with 3 eps figure

    Investigation and evaluation of the aging behaviour of technical materials as a selection criterion for use in zinc-air flow batteries

    Get PDF
    Zinc-air secondary batteries have the potential to act as electrochemical energy storage devices in broad industrial applications. The main arguments for developing marketable systems are the good commercial availability and environmental compatibility of zinc [1]. A consortium of different companies and scientific institutions is engaged in the development of a scalable zinc-air secondary battery. For the establishment of the system, the concept and all components, such as the gas diffusion electrode as well as the zinc electrode, are being investigated and optimised. In order to achieve a certain marketability of the battery after the end of the project, the plastic-based housing, sealing and current-conducting components are also being examined for their long-term stability and suitability. The system concept has high demands on the chemical resistance of the components due to the alkaline electrolyte in use. The plastics in question are typical housing materials with good chemical resistance, soft sealing materials based on thermoplastic elastomers and compounds highly filled with graphite for current conduction within the battery. To evaluate the materials, comparative studies are carried out with regard to the material properties, such as mechanical stability and electrical conductivity, and the combustion behaviour to assess the aging between newly produced and aged parts. In particular, the compounds highly filled with graphite presumably exhibit side reactions in contact with the active materials used in the system due to unavoidable impurities. This behaviour is also integrated in the evaluation of the raw material selection

    Doping driven magnetic instabilities and quantum criticality of NbFe2_{2}

    Full text link
    Using density functional theory we investigate the evolution of the magnetic ground state of NbFe2_{2} due to doping by Nb-excess and Fe-excess. We find that non-rigid-band effects, due to the contribution of Fe-\textit{d} states to the density of states at the Fermi level are crucial to the evolution of the magnetic phase diagram. Furthermore, the influence of disorder is important to the development of ferromagnetism upon Nb doping. These findings give a framework in which to understand the evolution of the magnetic ground state in the temperature-doping phase diagram. We investigate the magnetic instabilities in NbFe2_{2}. We find that explicit calculation of the Lindhard function, χ0(q)\chi_{0}(\mathbf{q}), indicates that the primary instability is to finite q\mathbf{q} antiferromagnetism driven by Fermi surface nesting. Total energy calculations indicate that q=0\mathbf{q}=0 antiferromagnetism is the ground state. We discuss the influence of competing q=0\mathbf{q}=0 and finite q\mathbf{q} instabilities on the presence of the non-Fermi liquid behavior in this material.Comment: 8 pages, 7 figure

    First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder

    Full text link
    The effect of the electron-phonon interaction on magnetization relaxation is studied within the framework of first-principles scattering theory for Fe, Co, and Ni by displacing atoms in the scattering region randomly with a thermal distribution. This "frozen thermal lattice disorder" approach reproduces the non-monotonic damping behaviour observed in ferromagnetic resonance measurements and yields reasonable quantitative agreement between calculated and experimental values. It can be readily applied to alloys and easily extended by determining the atomic displacements from ab initio phonon spectra

    Writing and Reading antiferromagnetic Mn2_2Au: N\'eel spin-orbit torques and large anisotropic magnetoresistance

    Get PDF
    Antiferromagnets are magnetically ordered materials which exhibit no net moment and thus are insensitive to magnetic fields. Antiferromagnetic spintronics aims to take advantage of this insensitivity for enhanced stability, while at the same time active manipulation up to the natural THz dynamic speeds of antiferromagnets is possible, thus combining exceptional storage density and ultra-fast switching. However, the active manipulation and read-out of the N\'eel vector (staggered moment) orientation is challenging. Recent predictions have opened up a path based on a new spin-orbit torque, which couples directly to the N\'eel order parameter. This N\'eel spin-orbit torque was first experimentally demonstrated in a pioneering work using semimetallic CuMnAs. Here we demonstrate for Mn2_2Au, a good conductor with a high ordering temperature suitable for applications, reliable and reproducible switching using current pulses and readout by magnetoresistance measurements. The symmetry of the torques agrees with theoretical predictions and a large read-out magnetoresistance effect of more than ≃6\simeq 6~%\% is reproduced by ab initio transport calculations.Comment: 5 pages, 4 figure

    Thermopower of Kondo Effect in Single Quantum Dot Systems with Orbital at Finite Temperatures

    Full text link
    We investigate the thermopower due to the orbital Kondo effect in a single quantum dot system by means of the noncrossing approximation. It is elucidated how the asymmetry of tunneling resonance due to the orbital Kondo effect affects the thermopower under gate-voltage and magnetic-field control.Comment: 4 pages, 4 figures, proceeding of Second International Symposium on Nanometer-Scale Quantum Physic

    On the spectrum of a bent chain graph

    Full text link
    We study Schr\"odinger operators on an infinite quantum graph of a chain form which consists of identical rings connected at the touching points by δ\delta-couplings with a parameter α∈R\alpha\in\R. If the graph is "straight", i.e. periodic with respect to ring shifts, its Hamiltonian has a band spectrum with all the gaps open whenever α≠0\alpha\ne 0. We consider a "bending" deformation of the chain consisting of changing one position at a single ring and show that it gives rise to eigenvalues in the open spectral gaps. We analyze dependence of these eigenvalues on the coupling α\alpha and the "bending angle" as well as resonances of the system coming from the bending. We also discuss the behaviour of the eigenvalues and resonances at the edges of the spectral bands.Comment: LaTeX, 23 pages with 7 figures; minor changes, references added; to appear in J. Phys. A: Math. Theo

    Leading off-diagonal contribution to the spectral form factor of chaotic quantum systems

    Get PDF
    We semiclassically derive the leading off-diagonal correction to the spectral form factor of quantum systems with a chaotic classical counterpart. To this end we present a phase space generalization of a recent approach for uniformly hyperbolic systems (M. Sieber and K. Richter, Phys. Scr. T90, 128 (2001); M. Sieber, J. Phys. A: Math. Gen. 35, L613 (2002)). Our results coincide with corresponding random matrix predictions. Furthermore, we study the transition from the Gaussian orthogonal to the Gaussian unitary ensemble.Comment: 8 pages, 2 figures; J. Phys. A: Math. Gen. (accepted for publication

    Induced Magnetic Ordering by Proton Irradiation in Graphite

    Full text link
    We provide evidence that proton irradiation of energy 2.25 MeV on highly-oriented pyrolytic graphite samples triggers ferro- or ferrimagnetism. Measurements performed with a superconducting quantum interferometer device (SQUID) and magnetic force microscopy (MFM) reveal that the magnetic ordering is stable at room temperature.Comment: 3 Figure
    • …
    corecore