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Abstract. We semiclassically derive the leading off-diagonal correction to the
spectral form factor of quantum systems with a chaotic classical counterpart. To
this end we present a phase space generalization of a recent approach for uniformly
hyperbolic systems [1, 2]. Our results coincide with corresponding random matrix
predictions. Furthermore, we study the transition from the Gaussian orthogonal
to the Gaussian unitary ensemble.

PACS numbers: 03.65.Sq,05.45.Mt

Advanced semiclassical methods have been very successful to significantly improve
our understanding of complex, classically chaotic quantum systems[3, 4]. This holds
particularly true for observables which can be deduced from the (single-particle) Green
function of the quantum system, such as the density of states, photo absorption, or
orbital magnetism, to name a few. However, for quantities which are based on Green
function products the situation is much more involved. These include linear response
functions, e.g. for quantum transport, spectral correlation functions or, more generally,
spectral statistics. A semiclassical treatment of such quantities is usually faced with
the serious problem of evaluating multiple infinite sums over phase-carrying classical
paths, which arise from the semiclassical representation of the Green functions in the
limit ~ → 0. A prominent example is the spectral two-point correlator or its Fourier
transform the spectral form factor K(τ). Random matrix assumptions leading to the
prediction of a universal form for K(τ) for classically chaotic quantum systems are
supported by experimental and numerical data for a vast number of systems from
different disciplines in physics [3]. Nevertheless, a corresponding analytical approach
proving the conjectured [5] universality by explicitly including the underlying chaotic
classical dynamics is still lacking. In this respect semiclassical techniques, bridging
classical and quantum dynamics, appear to be natural tools but have to cope with the
above mentioned problems when evaluating spectral correlations. For the form factor
this involves the computation of (energy) averaged double sums over periodic orbits
which has been addressed in several semiclassical approaches [6].

Recently, K(τ) was semiclassically investigated for uniformly hyperbolic two-
dimensional systems where the classical dynamics is governed by a single Lyapunov
exponent [1, 2]. By going beyond the usual diagonal approximation [7], (K(1)(τ) ≈ 2τ ,
describing the limit of spectral long-range correlations), the next to leading order
contribution to K(τ) was computed for systems with time-reversal symmetry. This
was achieved by identifying off-diagonal pairs of correlated periodic orbits which are
associated with each other via selfcrossings in configuration space. Based on this orbit
class the random matrix theory (RMT) prediction for the form factor in the Gaussian
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Leading off-diagonal contribution to the spectral form factor of chaotic quantum systems2

Orthogonal Ensemble (GOE), K(τ) ≈ 2τ − 2τ2 for τ → 0, could be derived [1, 2], see
also [8]. However, the important question remains whether the above result, as well
as the RMT prediction, are specific for systems with uniformly hyperbolic dynamics,
or whether they pertain for the much broader class of chaotic systems with different
periodic orbits having different Lyapunov exponents.

Here we present a generalization of the semiclassical approach outlined above to
such non-uniformly hyperbolic systems in two dimensions and show that under rather
general conditions the term ∼ −2τ2 in K(τ) is indeed retained. To this end we develop
a canonically invariant approach which is based on phase space arguments only. We
identify as the relevant objects ’crossing regions’ in phase space which can involve
more than one selfcrossing in configuration space. We express the action differences
of the considered orbit pairs in terms of local phase space properties, the directions
of the stable and unstable manifolds, and present a method for counting the ’crossing
regions’. This allows us eventually to determine their contribution to K(τ).

The semiclassical limit implies a large energy E compared to the mean level
spacing 1/d̄(E). The energy dependence of K(τ) is smoothed out by an average over
a classically small but quantum mechanically large energy window of size ∆E. In the
considered limit ∆E can be chosen such that 1/d̄(E) ≪ ∆E ≪ E. In this energy
regime all classical actions, such as the action Sspo of the shortest periodic orbit, are
much larger than ~, i.e. Sspo/~ ≫ 1. Then one can employ Gutzwiller’s trace formula
[3] for the oscillating part of the density of states and evaluate the Fourier transform
of the spectral two-point correlation function. This gives for the form factor a double
sum over periodic orbits [7],

K(τ) =
1

TH

∑

γ,γ̄

〈

AγA∗

γ̄ exp

(

i
Sγ,γ̄

~

)

δ

(

T −
Tγ + Tγ̄

2

)〉

∆E

, (1)

with the time scaled according to τ = T/TH where TH = 2π~d̄(E) is the Heisenberg
time. We represent each periodic orbit γ in terms of its phase space coordinates
x = (q, p) where q and p are the position and momentum coordinates in two
dimensions. In (1), Tγ is the period of an orbit xγ and Aγ includes both, its weight and
Maslov index. The action difference between two orbits xγ and xγ̄ is given by Sγ,γ̄ .
The argument of the double sum is a rapidly oscillating function and hence the energy
average suppresses most of the terms. To obtain a nonvanishing contribution to K(τ)
the action difference must be small, i.e. Sγ,γ̄ . ~. Thus, for the time reversal case,
the largest contribution is due to pairs of one path xγ with itself or its time-reversed
partner x

i
γ = (qγ(Tγ − t),−pγ(Tγ − t)) with vanishing action difference. Including

only this type of pairs, known as the diagonal approximation [7], reproduces the linear
contribution K(1)(τ) ≈ 2τ .

In the recent approach beyond the diagonal approximation pairs of closely related
periodic orbits with a small action difference have been constructed by analyzing self-
crossings of the orbits in configuration space [1, 2]. Here we proceed in a different way
by generalizing the approach via self-crossings to ’crossing regions’ in phase space: We
will show that if a periodic orbit xγ comes close to its time-reversed version x

i
γ in such

a ’crossing region’ this can imply the existence of yet another periodic orbit xγ̄ = x
p
γ

with a small action difference Sγ,γ̄ between the two. The partner orbit x
p
γ follows the

original xγ in a first segment R and then the time-reversed path x
i
γ during the rest

of the time in the second segment L, see figure 1(a). It will turn out that not every
’crossing region’ implies the existence of a partner orbit and therefore a small number
of non-relevant ’crossing regions’ has to be excluded.
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Figure 1. (a) Sketch of a correlated orbit pair in phase space (shown is a pro-
jection of the four-dimensional space). The original periodic orbit x, the time
reversed orbit x

i, and the partner orbit x
p are represented by the solid, dashed

and dotted line, respectively. Due to time reversal symmetry each ’crossing region’
appears twice. The Poincaré surface of section (PSS) defined by the perpendicular
coordinates (∆x⊥, ∆p⊥) is indicated in the upper ’crossing region’. (b) PSS with-
in the ’crossing region’ at the beginning of loop R. The path x defines the center
of the coordinate system while the vector δ~y points towards the time-reversed
orbit x

i. The position of the partner orbit x
p is given by the vector δ~xR,i.

To compute the contribution of the described orbit pairs (xγ , xp
γ) to K(τ) we

rearrange (1) into a sum over periodic orbits and another sum over all the partners
with small action difference. This is based on the assumption that the dominant off-
diagonal contribution to K(τ), equation (1), is due to the systematic correlation of
actions of the considered orbit pairs (xγ , xp

γ) while other correlations are negligible.
Then we sort the terms in the sums with respect to their action differences. Since
the orbit length Tγ is proportional to TH for fixed τ , one expects a large number
of ’crossing regions’ for each orbit. This allows us to replace the sum over action
differences Sγ,γ̄ by an integral. The first off-diagonal contribution to K(τ) then reads

K(2)(τ) = 4τ Re

〈 ∞
∫

0

dS

〈

dNS,γ

dS

〉

(γ,T )

exp

(

i
S

~

)

〉

∆E

(2)

where NS,γ is the number of relevant ’crossing regions’ for a given periodic orbit xγ

with an associated action difference smaller than S. In equation (2), 〈. . .〉(γ,T ) denotes
a weighted average over all orbits xγ of given length Tγ = τTH . It is defined as

〈

dNS,γ

dS

〉

(γ,T )

≡
1

T

∑

γ

dNS,γ

dS
|Aγ |

2δ(T − Tγ) . (3)

We proceed with the evaluation of (2) by first determining the geometry of the partner
orbit x

p
γ . Then we show that the action difference between xγ and x

p
γ is indeed small

if the orbit xγ and its time-reversed version x
i
γ come close together in parts of the

phase space. Finally we derive the averaged number 〈dNS,γ/dS〉(γ,Tγ=T ) of relevant

’crossing regions’ in the contributing regime S . ~.
Partner geometry. To construct the partner orbit we analyse the linearised

equations of motion around xγ in part R and around x
i
γ in section L in the Poincaré
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surface of section (PSS), see figure 1, and show that a nontrivial solution representing
the partner orbit x

p
γ exists under certain conditions. The distance between the

original orbit xγ and its time-reversed partner x
i
γ in the PSS defined by the local

transverse coordinates at the phase space position x ≡ xγ(t) is given by the vector
δ~y ≡ (∆x⊥, ∆p⊥) [10]. In general, the time evolution of a small deviation is determined
by the starting point x0 of the original path in phase space and the initial deviation in
the PSS δ~y0, e.g. δ~y = δ~y(t; x0, δ~y0). Let us assume for the moment that the ’crossing
region’ under consideration is characterized by a small distance δ~y. Decomposing
δ~y = yu ~wu + ys ~ws in terms of the local unstable and stable manifolds ~wu,s [9] with
the expansion coefficients

yu,s ≡
~w T

s,u Z δ~y

~w T
s,u Z ~wu,s

and Z ≡

(

0 1
−1 0

)

(4)

the smallness of δ~y is given if |yu,s| ≪ 1. For simplicity we choose the relative
orientation and lengths of the ~wu,s such that (Z ~ws)

T ~wu = Sspo. It will turn out
that |yu,s| ≪ 1 is the relevant regime for the evaluation of K(τ) in the semiclassical
limit. The distance between xγ and the partner orbit x

p
γ at the beginning of the first

loop R is denoted by δ~xR,i, see figure 1(b). This vector lies in the PSS defined at
the phase space position x ≡ xγ(t) before the loop R [this corresponds to the upper
crossing region in figure 1(a)]. Having passed loop R after time TR this distance has
changed to R δ~xR,i with R being the stability matrix for loop R. Before (and after)
the other part of the orbit the difference between the time-reversed path x

i
γ and the

partner x
p
γ is denoted by δ~xLi,i (and Li δ~xLi,i) where Li ≡ FL−1F is the stability

matrix of the time-reversed loop L. The matrix F is defined as

F ≡

(

1 0
0 −1

)

. (5)

Solving the linearised equations of motion under the condition that the two parts of
the partner orbit fit together in the ’crossing regions’ yields the geometry of x

p
γ in

terms of the distance δ~y between the original orbit xγ and its time-reversed x
i
γ :

δ~xR,i =
[

1 − LiR
]−1 [

1 − LiF
]

δ~y. (6)

The corresponding condition for δ~xLi,i for the lower ’crossing region’ in figure 1(a) is
found in a similar way [14]. This set of solutions δ~x includes terms of order O(yu,s)
and defines the partner orbit for a given small δ~y representing a ’crossing region’.

We now argue that a ’crossing region’ does not yield a partner if the periodic orbit
xγ lies close to a self-retracing path during one of the loops. This type of ’crossing
region’ is described by a δ~ysr such that the original path xγ and the time-reversed x

i
γ

stay close together with |ysr
u,s| ≪ 1 holding during the entire loop R. The motion of the

time-reversed path x
i
γ in R can then be obtained by linearisation around the original

xγ using the stability matrix R. In this case one finds R δ~ysr = F δ~ysr neglecting
corrections of higher then first order in ys,u. The solution (6) is then replaced by
δ~xR,i = δ~ysr and δ~xLi,i = 0. It therefore does not give a new partner orbit but just
the time-reversed periodic orbit x

p
γ = x

i
γ . But contributions to K(τ) of this type

are already treated in the diagonal approximation and must not be included in (2).
However, because of the hyperbolic nature of the dynamics the condition |ysr

u,s| ≪ 1
holds true for the entire loop R only if the loop time T sr

R is smaller than a certain
minimal time TR,min(xγ(t), δ~y), i.e. T sr

R < TR,min. Corresponding arguments involving
the time TL,min(xγ(t), δ~y) hold for the other loop L. These minimal times T(R,L),min
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are determined by the time scale on which the linearization breaks down and are
implicitly given by the condition

yu,s(±T(R,L),min; x, δ~y) = cu,s(x) (7)

where the ′+′ (′−′) sign corresponds to yu (ys) and cu,s(x) are constants of order one.
Since (6) uniquely defines the partner orbit as sketched in figure 1(a) one can

show that the Maslov index for the orbit xγ equals that of x
p
γ . The Maslov index of a

periodic orbit is given by the winding number of the stable or unstable manifold [12].
Since the partner orbit is close to the original orbit in section R the contribution to the
winding number accumulated between the two ’crossing regions’ is the same for both.
The second contribution comes from loop L and is thus given by the geometry x

i
γ .

The total winding number for x
p, the sum of these two contributions, can be related to

the total winding number of x in the following way. Time reversal symmetry implies
the relation ~ws,u(xγ(t)) = −F ~wu,s(x

i
γ(Tγ − t)) between the manifolds of xγ and x

i
γ .

With this relation one can show that the contributions to the winding number coming
from x

i
γ and xγ during L are equal. Then the equality of the Maslov indices of xγ and

x
p
γ becomes evident [14] if one uses similar arguments as in the proof of the equality

of the Maslov indices of a periodic orbit and its time reversed counterpart [13].
Action difference. The geometry of the partner given by (6) allows one to derive

the action difference between the two orbits of the pair (xγ , xp
γ) as a function of δ~y.

Since the distance δ~y is assumed to be small it is sufficient to expand the action in
δ~y. However, the expression one obtains for S [15] still contains all the elements of
the stability matrices R and L because the geometry of the partner orbit as given by
(6) depends on them. Since the existence of the partner implies loop lengths larger
than T(L,R),min the vectors δ~x have to lie very close to the respective local stable or
unstable manifolds, e.g. δ~xR,i ≈ ys ~ws(x). This fact enables us to express the action
difference Sγ,γ̄ between the original orbit xγ and the partner orbit x

p
γ = xγ̄ in terms

of the local manifolds [14] and the expansion coefficients yu,s given by (4). Under
the assumption that the directions of the manifolds are continuous functions of the
position in phase space [9] the result then reads

Sγ,γ̄ = S(δ~y, x) ≈ (~wT
u Z ~ws) ys yu (8)

which is correct up to second order in δ~y. In the semiclassical limit it is sufficient to
consider the regime given by |yu,s| ∼

√

~/(~wT
u Z ~ws) =

√

~/Sspo ≪ 1 which justifies
the above restriction to small values of |yu,s|.

The equations (6) representing the geometry of x
p and (8) are invariant under

a shift of the PSS along the orbit within a ’crossing region’. This also implies that
a ’crossing region’ may include several selfcrossings in configuration space and hence
the number of partners is not necessarily given by the number of selfcrossings as it
was the case for the uniformly hyperbolic systems [1, 2].

Counting ’crossing regions’. Moving the PSS along xγ each ’crossing region’
is characterized by a δ~y that starts close to ~ws and ends almost parallel to ~wu. The
number of ’crossing regions’ can thus be determined by counting how often the unstable
components yu of the vectors δ~y go through a certain fixed value yc

u as one moves along
xγ . This parameter yc

u fixes the position within the ’crossing regions’ used to identify
and count it. The total number of ’crossing regions’ must not depend on yc

u and it
will be shown that this is indeed the case.
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To evaluate the weighted average (3) of the number NS of contributing ’crossing
regions’ we make use of the following sum rule [11] valid for ergodic systems

1

T

∑

γ

|Aγ |
2δ(T − Tγ)

Tγ
∫

0

dtf(xγ(t)) ≈

T
∫

0

dtf(x(t)) for T → ∞. (9)

It relates the weighted average of a function f(x) over all periodic orbits of length T
to a time average over a generic ergodic trajectory x(t, x0) starting at any x0 in phase
space. To apply (9) in the calculation of (3) one writes the number of events where
the time reversed path comes close to the original one as

d2NS,γ(xγ(t))

dS dt
= ρ(xγ(t), S, yc

u)
ẏu(0; xγ(t), S, yc

u)

yu(0; xγ(t), S, yc
u)

, (10)

where ρ(xγ(t); S, yc
u) is the density of partners per action in the PSS located at xγ(t).

The ratio ẏu/yu describes the velocity of the flow in the PSS so that (10) indeed gives
the number of partners per action and time. In expression (10) the position in the
PSS is specified in terms of S and yc

u using (8).
The density ρ(x; S, yc

u) is determined by the probability that the time reversed
path goes through the point (S, yc

u) in the PSS defined at x. The long time limit is
thus given by the ergodic density ρ0 = T/Σ(E) = τ/(2π~) with Σ(E) = (2π~)2d̄(E)
being the volume of the energy surface in phase space. However, since certain ’crossing
regions’ with short loop lengths characterized by T(R,L) < T(R,L),min, see (7), do not
yield a partner one has to exclude parts of the time reversed path of length

Tmin(x, S) ≡ 2[TR,min(x, S, yc
u) + TL,min(x, S, yc

u)] (11)

with the factor 2 coming from time reversal symmetry. According to definition (7)
this time Tmin(x, S) is determined by the time it takes for the unstable component
yu to grow from the small value S/(Sspocs) ≪ 1 to the value cu ∼ 1. It therefore
does not depend on yc

u. To compute (3) we first apply (9) to (10). Then the minimal
time (11) is of the same order as the Ehrenfest time and in the regime of small action
differences S ∼ ~ given by the asymptotic expression

λTmin(x, S) ≈ 2 ln

[

cu(x)cs(x)
Sspo

S

]

≫ 1 (12)

where we used the standard definition of the Lyapunov exponent λ in terms of any
long ergodic path [9]. Using this relation we find that the main contribution to (2) in
the semiclassical limit is given by the averaged number of ’crossing regions’

〈

dNS,γ

dS

〉

γ

= ρ0

[

λT + 2 ln
S

Sspo
− const

]

, (13)

where const depends on the structure of the phase space of the considered system but
is independent of the action difference S and the time T [14]. The first of the three
contributions on the r.h.s. of (13) is the largest one (∼ ~

−2) and represents the ergodic
properties of the system. The second term ∼ ~

−1 ln ~ reflects the underlying dynamics
of the system [16] and is much smaller than the first but still logarithmically larger
than the third term ∼ ~

−1. Inserting (13) into (2) one finds that it is this logarithmic
correction to the ergodic behaviour that gives the RMT result

K(2)(τ) ≈ −2τ2. (14)

GOE-GUE transition. The crossover between the universality classes as time
reversal symmetry is broken has been originally semiclassically obtained in Ref. [17]
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within the diagonal approximation. Here we summarize a dynamical evaluation of this
transition for the first off-diagonal correction. The appropriate transition parameter
α interpolating between GOE and GUE is given by the ratio between the root mean
square of a typical time-reversal symmetry breaking matrix element and the mean
level spacing [17]. We shall consider the case where the symmetry is broken by a
uniform magnetic field B perpendicular to a uniformly hyperbolic two-dimensional
system. Since for an orbit pair (xγ , xp

γ) one of the common loops (L or R) between
the ’crossing regions’ are traversed in opposite direction in configuration space, the
orbit pair acquires, owing to the overall magnetic flux enclosed, an additional action
difference 4πAB/φ0. Here A is the enclosed (directed) area of the loop and φ0 = h/2e
the flux quantum. For hyperbolic systems the distribution of directed areas enclosed
by trajectories of length t is, to good approximation[4], Gaussian with variance tβ
where β is a system specific parameter. To compute K(2)(τ) at finite B we must
additionally integrate, for given loop length t, the flux-induced action differences over
the Gaussian area distribution. This results in a further damping exp[−t/tB] with
1/tB = 2β(2πB/φ0)

2. Counting the ’crossing regions’ with this additional weight
eventually gives, together with the diagonal term, [14, 18]

K(τ ; α) ≈ τ [1 + (1 − 2τ)e−8π2α2τ ] for τ → 0 (15)

with α2τ = (B/φ0)
2βT . This precisely coincides with the form factor of parametric

RMT [19] in the short time limit.
To conclude, we have shown how correlations in the action of classical paths

determine the spectral statistics of the quantum mechanical energy eigenvalues. We
derived the next to leading order contribution for the spectral form factor K(τ)
and showed that it is identical to the corresponding RMT result. Our derivation
is canonical invariant and based on phase space arguments only. This leads to the
result that correlations in the classical action in hyperbolic chaotic systems are caused
by ’crossing regions’ in phase space where an orbit and its time-reversed version come
close together. Since our method avoids the concept of crossings in configuration space
it is suited to be extended to systems with more than two degrees of freedom.
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