33 research outputs found

    Optimization of gold nanoparticle-based real-time colorimetric assay of dipeptidyl peptidase IV activity

    Get PDF
    Dipeptidyl peptidase IV (DPP-IV also referred to as CD-26) is a serine protease enzyme with remarkable diagnostic and prognostic value in a variety of health and disease conditions. Herein, we describe a simple and real-time colorimetric assay for DPP-IV/CD-26 activity based on the aggregation of gold nanoparticles (AuNPs) functionalized with the peptide substrates: Gly-Pro-Asp-Cys (GPDC) or Val-Pro-ethylene diamine-Asp-Cys (VP-ED-DC). Cleavage of the substrates by DPP-IV resulted in aggregation of the AuNPs with accompanying color change in the solution from red to blue that was monitored using either a UV–visible spectrophotometer or by the naked eye. Factors, such as time course of the reaction, stability of the functionalized AuNPs and the structure of the substrate that influence the cleavage reaction in solution were investigated. The effects of potential interference from serum proteins (lysozyme, thrombin and trypsin) on the analytical response were negligible. The detection limits when GPDC or VP-EN-DC functionalized AuNPs were used for DPP-IV assay were 1.2 U/L and 1.5 U/L, respectively. The VP-EN-DC method was preferred for the quantitative determination of DPP-IV activity in serum because of its wide linear range 0–30 U/L compared to 0–12 U/L for the GPDC assay. Recoveries from serum samples spiked with DPP-IV activity, between 5 and 25 U/L, and using the VP-EN-DC modified AuNPs method ranged between 83.6% and 114.9%. The two colorimetric biosensors described here are superior to other conventional methods because of their simplicity, stability, selectivity and reliability

    Virtual screening for high affinity guests for synthetic supramolecular receptors

    Get PDF
    The protein/ligand docking software GOLD, which was originally developed for drug discovery, has been used in a virtual screen to identify small molecules that bind with extremely high affinities (K ≈ 107 M-1) in the cavity of a cubic coordination cage in water. A scoring function was developed using known guests as a training set and modified by introducing an additional term to take account of loss of guest flexibility on binding. This scoring function was then used in GOLD to successfully identify 15 new guests and accurately predict the binding constants. This approach provides a powerful predictive tool for virtual screening of large compound libraries to identify new guests for synthetic hosts, thereby greatly simplifying and accelerating the process of identifying guests by removing the reliance on experimental trial-and-error

    Modulating the electron-transfer properties of a mixed-valence system through host–guest chemistry

    Get PDF
    Metal directed self-assembly has become a much-studied route towards complex molecular architectures. Although studies on mixed valence, MV, systems accessible through this approach are almost non-existent, the potential applications of such systems are very exciting as MV states provide the basis of a number of molecular-scale devices, including single electron wires and switches. Furthermore, while many novel hosts for guest ions and molecules have been developed through metal directed self-assembly, as these products tend to be kinetically labile, very few electrochemical studies have been reported. Herein, we report that the interplay between the binding properties and redox activity of a self-assembled trinuclear RuII macrocycle leads to an hitherto unreported phenomenon, in which access to specific MV states can be gated by host–guest chemistry. Thus, this system is the first in which MV states and the extent of electron delocalisation are switched by an ion without any change in electrochemical potential

    Water-Soluble Truncated Fatty Acid-Porphyrin Conjugates Provide Photo-Sensitizer Activity for Photodynamic Therapy in Malignant Mesothelioma.

    Get PDF
    Clinical trials evaluating intrapleural photodynamic therapy (PDT) are ongoing for mesothelioma. Several issues still hinder the development of PDT, such as those related to the inherent properties of photosensitizers. Herein, we report the synthesis, photophysical, and photobiological properties of three porphyrin-based photosensitizers conjugated to truncated fatty acids (C5SHU to C7SHU). Our photosensitizers exhibited excellent water solubility and high PDT efficiency in mesothelioma. As expected, absorption spectroscopy confirmed an increased aggregation as a consequence of extending the fatty acid chain length. In vitro PDT activity was studied using human mesothelioma cell lines (biphasic MSTO-211H cells and epithelioid NCI-H28 cells) alongside a non-malignant mesothelial cell line (MET-5A). The PDT effect of these photosensitizers was initially assessed using the colorimetric WST-8 cell viability assay and the mode of cell death was determined via flow cytometry of Annexin V-FITC/PI-stained cells. Photosensitizers appeared to selectively localize within the non-nuclear compartments of cells before exhibiting high phototoxicity. Both apoptosis and necrosis were induced at 24 and 48 h. As our pentanoic acid-derivatized porphyrin (C5SHU) induced the largest anti-tumor effect in this study, we put this forward as an anti-tumor drug candidate in PDT and photo-imaging diagnosis in mesothelioma

    Imaging of Light-Enhanced Extracellular Vesicle-Mediated Delivery of Oxaliplatin to Colorectal Cancer Cells via Laser Ablation, Inductively Coupled Plasma Mass Spectrometry

    Get PDF
    Extracellular vesicles (EVs) are lipid bilayer structures released by all cells that mediate cell-to-cell communication via the transfer of bioactive cargo. Because of the natural origin of EVs, their efficient uptake by recipient cells, capacity to stabilize and transport biomolecules and their potential for cell/tissue targeting and preferential uptake by cancer cells, they have enormous potential for bioengineering into improved and targeted drug delivery systems. In this work, we investigated the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool to measure the loading of platinum-based chemotherapeutic agents. The EV loading of oxaliplatin via co-incubation was demonstrated, and LA-ICP-MS imaging showed greater efficiency of delivery to colorectal cancer cells compared to free oxaliplatin, leading to enhanced cytotoxic effect. Further, the impact of EV co-loading with a porphyrin (C5SHU, known as ‘C5’) photosensitizer on oxaliplatin delivery was assessed. Fluorescence analysis using nano-flow cytometry showed dose-dependent EV loading as well as a trend towards the loading of larger particles. Exposure of OXA-C5-EV-treated colorectal cancer cells to light indicated that delivery was enhanced by both light exposure and porphyrins, with a synergistic effect on cell viability observed between oxaliplatin, EVs and light exposure after the delivery of the co-loaded EVs. In summary, this work demonstrates the utility of LA-ICP-MS and mass spectrometry imaging in assessing the loading efficiency and cellular delivery of platinum-based therapeutics, which would also be suitable for agents containing other elements, confirms that EVs are more efficient at delivery compared to free drugs, and describes the use of light exposure in optimizing delivery and therapeutic effects of EV-mediated drug delivery both in combination and independently of porphyrin-based photosensitizers

    Mapping the internal recognition surface of an octanuclear coordination cage using guest libraries

    Get PDF
    Size and shape criteria for guest binding inside the cavity of an octanuclear cubic coordination cage in water have been established using a new fluorescence displacement assay to quantify guest binding. For aliphatic cyclic ketones of increasing size (from C5 to C11), there is a linear relationship between ΔG for guest binding and the guest’s surface area: the change in ΔG for binding is 0.3 kJ mol–1 Å–2, corresponding to 5 kJ mol–1 for each additional CH2 group in the guest, in good agreement with expectations based on hydrophobic desolvation. The highest association constant is K = 1.2 × 106 M–1 for cycloundecanone, whose volume is approximately 50% of the cavity volume; for larger C12 and C13 cyclic ketones, the association constant progressively decreases as the guests become too large. For a series of C10 aliphatic ketones differing in shape but not size, ΔG for guest binding showed no correlation with surface area. These guests are close to the volume limit of the cavity (cf. Rebek’s 55% rule), so the association constant is sensitive to shape complementarity, with small changes in guest structure resulting in large changes in binding affinity. The most flexible members of this series (linear aliphatic ketones) did not bind, whereas the more preorganized cyclic ketones all have association constants of 104–105 M–1. A crystal structure of the cage·cycloundecanone complex shows that the guest carbonyl oxygen is directed into a binding pocket defined by a convergent set of CH groups, which act as weak hydrogen-bond donors, and also shows close contacts between the exterior surface of the disc-shaped guest and the interior surface of the pseudospherical cage cavity despite the slight mismatch in shape

    Controlling a recognition-mediated reaction using a pH switch

    No full text
    The selective recognition-mediated reaction between a nitrone bearing a urea recognition site and a maleimide bearing a proton switchable recognition site can be turned ‘on’ and ‘off’ by the addition of base and acid respectively

    Probing the limits of rate acceleration mediated by hydrogen bonds

    No full text
    A simple receptor and substrate are used to probe the relationship between transition-state charge and the level of rate acceleration that can be created by stabilizing the transition state through hydrogen bonding. Pericyclic reactions are accelerated less than 2-fold by the receptor, whereas a conjugate addition reaction is accelerated more than 30-fold. Therefore, substrate polarization by hydrogen bonding would only appear to be effective for reactions that generate significant charge at the transition state
    corecore