505 research outputs found

    analysis of thermal damage in frp drilling

    Get PDF
    Abstract Among machining operations applied to polymeric composite materials, drilling is the more important one due to the need to implement mechanical couplings, which in most cases are not yet possible using structural adhesives. Such process is very critical because not only it causes the interruption of the fibers continuity, but also it can generate localized thermal shock in the resin, due to the presence of extremely hard and abrasive fibers and to the low thermal conductivity of the resin itself, that limits the heat dissipation. These phenomena are more severe in dry machining process, that are used in aeronautic industry. The poor FRP machinability is manifested in the induced phenomena of delamination, fragmentation and matrix thermal damage that cause negative outcomes, such as the reduction of the material fatigue strength and the consequent decay of long-term performance. The evaluation of such critical issues is possible through indirect analysis, that is through the analysis of some control parameters, such as the process forces and temperatures that assume different values depending on the combination of cutting parameters. Therefore, to acquire useful information for machining optimization is possible through process monitoring: the input data can be analyzed, processed and made available to optimize the process parameters in order to reduce critical issues such as the delamination, the fragmentation and the thermal damage. The present work deals with the problem of damage due to the high temperatures reached during the FRP dry drilling process. The temperature was measured by K type thermocouples positioned in the workpiece, near the hole surface, and it was evaluated as a function of the main process parameters in order to estimate the critical cutting conditions that lead to critical temperature overcoming

    The Highly Miniaturised Radiation Monitor

    Full text link
    We present the design and preliminary calibration results of a novel highly miniaturised particle radiation monitor (HMRM) for spacecraft use. The HMRM device comprises a telescopic configuration of active pixel sensors enclosed in a titanium shield, with an estimated total mass of 52 g and volume of 15 cm3^3. The monitor is intended to provide real-time dosimetry and identification of energetic charged particles in fluxes of up to 108^8 cm−2^{-2} s−1^{-1} (omnidirectional). Achieving this capability with such a small instrument could open new prospects for radiation detection in space.Comment: 17 pages, 15 figure

    RIFT process analysis for the production of green composites in flax fibers and bio-based epoxy resin

    Get PDF
    In this work, a dual objective is carried out on composite materials in flax fiber and bio-based epoxy resin: to determine the process parameters and to develop a numerical model for highlighting the potential of and the limits in the production of “green” laminates through a RIFT process (Resin Infusion under Flexible Tool). For these reasons, compressibility tests were performed in order to evaluate the behavior of commercial flax woven under the vacuum bag. Subsequently, permeability tests were performed in order to evaluate the permeability curves necessary for the numerical study of the infusion process. For the numerical analyses, the commercial software PAM-RTM was adopted and validated. In this work, vaseline oil was used as the injected resin for the validation, and a bio-based epoxy commercial system was used for the study of the infusion process in a simple case study. The results were compared with a petroleum-based epoxy system typically used for infusion processes, showing the potentiality and the critical use of bio-based resins for infusion processes

    High resolution pixel detectors for e+e- linear colliders

    Get PDF
    The physics goals at the future e+e- linear collider require high performance vertexing and impact parameter resolution. Two possible technologies for the vertex detector of an experimental apparatus are outlined in the paper: an evolution of the Hybrid Pixel Sensors already used in high energy physics experiments and a new detector concept based on the monolithic CMOS sensors.Comment: 8 pages, to appear on the Proceedings of the International Workshop on Linear Colliders LCWS99, Sitges (Spain), April 28 - May 5, 199

    Approximately efficient two-sided combinatorial auctions

    Get PDF
    We develop and extend a line of recent work on the design of mechanisms for two-sided markets. e markets we consider consist of buyers and sellers of a number of items, and the aim of a mechanism is to improve the social welfare by arranging purchases and sales of the items. A mechanism is given prior distributions on the agents’ valuations of the items, but not the actual valuations; thus the aim is to maximise the expected social welfare over these distributions. As in previous work, we are interested in the worst-case ratio between the social welfare achieved by a truthful mechanism, and the best social welfare possible. Our main result is an incentive compatible and budget balanced constant-factor approximation mechanism in a setting where buyers have XOS valuations and sellers’ valuations are additive. This is the rst such approximation mechanism for a two-sided market setting where the agents have combinatorial valuation functions. To achieve this result, we introduce a more general kind of demand query that seems to be needed in this situation. In the simpler case that sellers have unit supply (each having just one item to sell), we give a new mechanism whose welfare guarantee improves on a recent one in the literature. We also introduce a more demanding version of the strong budget balance (SBB) criterion, aimed at ruling out certain “unnatural” transactions satised by SBB. We show that the stronger version is satised by our mechanisms

    Spatial Resolution of Double-Sided Silicon Microstrip Detectors for the PAMELA Apparatus

    Full text link
    The PAMELA apparatus has been assembled and it is ready to be launched in a satellite mission to study mainly the antiparticle component of cosmic rays. In this paper the performances obtained for the silicon microstrip detectors used in the magnetic spectrometer are presented. This subdetector reconstructs the curvature of a charged particle in the magnetic field produced by a permanent magnet and consequently determines momentum and charge sign, thanks to a very good accuracy in the position measurements (better than 3 um in the bending coordinate). A complete simulation of the silicon microstrip detectors has been developed in order to investigate in great detail the sensor's characteristics. Simulated events have been then compared with data gathered from minimum ionizing particle (MIP) beams during the last years in order to tune free parameters of the simulation. Finally some either widely used or original position finding algorithms, designed for such kind of detectors, have been applied to events with different incidence angles. As a result of the analysis, a method of impact point reconstruction can be chosen, depending on both the particle's incidence angle and the cluster multiplicity, so as to maximize the capability of the spectrometer in antiparticle tagging.Comment: 28 pages, 18 figures, submitted to Nuclear Instruments and Methods in Physics Research

    Beam Test Results of the BTeV Silicon Pixel Detector

    Get PDF
    The results of the BTeV silicon pixel detector beam test carried out at Fermilab in 1999-2000 are reported. The pixel detector spatial resolution has been studied as a function of track inclination, sensor bias, and readout threshold.Comment: 8 pages of text, 8 figures, Proceedings paper of Pixel 2000: International Workshop on Semiconductor Pixel Detectors for Particles and X-Rays, Genova, June 5-8, 200

    Novel recoil nuclei detectors to qualify the AMANDE facility as a Standard for mono-energetic neutron fields

    Full text link
    The AMANDE facility at IRSN-Cadarache produces mono-energetic neutron fields from 2 keV to 20 MeV with metrological quality. To be considered as a standard facility, characteristics of neutron field i.e fluence distribution must be well known by a device using absolute measurements. The development of new detector systems allowing a direct measurement of neutron energy and fluence has started in 2006. Using the proton recoil telescope principle with the goal of increase the efficiency, two systems with full localization are studied. A proton recoil telescope using CMOS sensor (CMOS-RPT) is studied for measurements at high energies and the helium 4 gaseous micro-time projection chamber (microTPC He4) will be dedicated to the lowest energies. Simulations of the two systems were performed with the transport Monte Carlo code MCNPX, to choose the components and the geometry, to optimize the efficiency and detection limits of both devices or to estimate performances expected. First preliminary measurements realised in 2008 demonstrated the proof of principle of these novel detectors for neutron metrology.Comment: to appear in Radiation Measurements, Proc. of 24th International Conference on Nuclear Tracks in Solids (Bologna, 1-5 September 2008

    Performance of prototype BTeV silicon pixel detectors in a high energy pion beam

    Get PDF
    The silicon pixel vertex detector is a key element of the BTeV spectrometer. Sensors bump-bonded to prototype front-end devices were tested in a high energy pion beam at Fermilab. The spatial resolution and occupancies as a function of the pion incident angle were measured for various sensor-readout combinations. The data are compared with predictions from our Monte Carlo simulation and very good agreement is found.Comment: 24 pages, 20 figure
    • 

    corecore