6 research outputs found

    B Cells versus T Cells in the Tumor Microenvironment of Malignant Lymphomas. Are the Lymphocytes Playing the Roles of Muhammad Ali versus George Foreman in Zaire 1974?

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadMalignant lymphomas are a heterogeneous group of malignancies that develop both in nodal and extranodal sites. The different tissues involved and the highly variable clinicopathological characteristics are linked to the association between the lymphoid neoplastic cells and the tissues they infiltrate. The immune system has developed mechanisms to protect the normal tissue from malignant growth. In this review, we aim to explain how T lymphocyte-driven control is linked to tumor development and describe the tumor-suppressive components of the resistant framework. This manuscript brings forward a new insight with regard to intercellular and intracellular signaling, the immune microenvironment, the impact of therapy, and its predictive implications. A better understanding of the key components of the lymphoma environment is important to properly assess the role of both B and T lymphocytes, as well as their interplay, just as two legendary boxers face each other in a heavyweight title final, as was the case of Ali versus Foreman. Keywords: B lymphocytes; T lymphocytes; lymphocyte inter-talk; malignant lymphomas; tumor microenvironment.Iuliu Hatieganu University, School of Doctoral Studies RomanianMinistry of Research and Innovation, CCCDI-UEFISCDI within PNCDI III European Economic Spac

    B Cells versus T Cells in the Tumor Microenvironment of Malignant Lymphomas. Are the Lymphocytes Playing the Roles of Muhammad Ali versus George Foreman in Zaire 1974?

    Get PDF
    Publisher's version (útgefin grein)Malignant lymphomas are a heterogeneous group of malignancies that develop both in nodal and extranodal sites. The different tissues involved and the highly variable clinicopathological characteristics are linked to the association between the lymphoid neoplastic cells and the tissues they infiltrate. The immune system has developed mechanisms to protect the normal tissue from malignant growth. In this review, we aim to explain how T lymphocyte-driven control is linked to tumor development and describe the tumor-suppressive components of the resistant framework. This manuscript brings forward a new insight with regard to intercellular and intracellular signaling, the immune microenvironment, the impact of therapy, and its predictive implications. A better understanding of the key components of the lymphoma environment is important to properly assess the role of both B and T lymphocytes, as well as their interplay, just as two legendary boxers face each other in a heavyweight title final, as was the case of Ali versus Foreman.The research on the lymphoma microenvironment was funded by an internal grant of the Iuliu Hatieganu University, School of Doctoral Studies (PCD 2018-2021) (Minodora Desmirean), under the frame of European Social Found, Human Capital Operational Program 2014-2020, project no. POCU/380/6/13/125171 (Minodora Desmirean) and the Romanian Ministry of Research and Innovation, CCCDI-UEFISCDI, Project No. PN-III-P4-ID-PCCF-2016-0112 within PNCDI III, by an award for Young Research Teams 2020-2022 (Grant No. PN-III-P1-1.1-TE-2019-0271) (both Ciprian Tomuleasa) as well as by an international collaborative grant of the European Economic Space between Romania and Iceland 2020-2022 (Grant No. 19-COP-0031) (Ciprian Tomuleasa)."Peer Reviewed

    A narrative review of central nervous system involvement in acute leukemias.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadAcute leukemias (both myeloid and lymphoblastic) are a group of diseases for which each year more successful therapies are implemented. However, in a subset of cases the overall survival (OS) is still exceptionally low due to the infiltration of leukemic cells in the central nervous system (CNS) and the subsequent formation of brain tumors. The CNS involvement is more common in acute lymphocytic leukemia (ALL), than in adult acute myeloid leukemia (AML), although the rates for the second case might be underestimated. The main reasons for CNS invasion are related to the expression of specific adhesion molecules (VLA-4, ICAM-1, VCAM, L-selectin, PECAM-1, CD18, LFA-1, CD58, CD44, CXCL12) by a subpopulation of leukemic cells, called "sticky cells" which have the ability to interact and adhere to endothelial cells. Moreover, the microenvironment becomes hypoxic and together with secretion of VEGF-A by ALL or AML cells the permeability of vasculature in the bone marrow increases, coupled with the disruption of blood brain barrier. There is a single subpopulation of leukemia cells, called leukemia stem cells (LSCs) that is able to resist in the new microenvironment due to its high adaptability. The LCSs enter into the arachnoid, migrate, and intensively proliferate in cerebrospinal fluid (CSF) and consequently infiltrate perivascular spaces and brain parenchyma. Moreover, the CNS is an immune privileged site that also protects leukemic cells from chemotherapy. CD56/NCAM is the most important surface molecule often overexpressed by leukemic stem cells that offers them the ability to infiltrate in the CNS. Although asymptomatic or with unspecific symptoms, CNS leukemia should be assessed in both AML/ALL patients, through a combination of flow cytometry and cytological analysis of CSF. Intrathecal therapy (ITT) is a preventive measure for CNS involvement in AML and ALL, still much research is needed in finding the appropriate target that would dramatically lower CNS involvement in acute leukemia. Keywords: Acute leukemias; central nervous system involvement (CNS involvement); clinical management; pathophysiology.Iuliu Hatieganu University-School of Doctoral Studies (PCD 2019-2021) Romanian Government Ion Chiricuta Oncology Institute Cluj Napoca European Economic Spac

    Deep-learning magnetic resonance imaging-based automatic segmentation for organs-at-risk in the brain: Accuracy and impact on dose distribution

    No full text
    Background and purpose: Normal tissue sparing in radiotherapy relies on proper delineation. While manual contouring is time consuming and subject to inter-observer variability, auto-contouring could optimize workflows and harmonize practice. We assessed the accuracy of a commercial, deep-learning, MRI-based tool for brain organs-at-risk delineation. Materials and methods: Thirty adult brain tumor patients were retrospectively manually recontoured. Two additional structure sets were obtained: AI (artificial intelligence) and AIedit (manually corrected auto-contours). For 15 selected cases, identical plans were optimized for each structure set. We used Dice Similarity Coefficient (DSC) and mean surface-distance (MSD) for geometric comparison and gamma analysis and dose-volume-histogram comparison for dose metrics evaluation. Wilcoxon signed-ranks test was used for paired data, Spearman coefficient(ρ) for correlations and Bland–Altman plots to assess level of agreement. Results: Auto-contouring was significantly faster than manual (1.1/20 min, p < 0.01). Median DSC and MSD were 0.7/0.9 mm for AI and 0.8/0.5 mm for AIedit. DSC was significantly correlated with structure size (ρ = 0.76, p < 0.01), with higher DSC for large structures. Median gamma pass rate was 74% (71–81%) for Plan_AI and 82% (75–86%) for Plan_AIedit, with no correlation with DSC or MSD. Differences between Dmean_AI and Dmean_Ref were ≤ 0.2 Gy (p < 0.05). The dose difference was moderately correlated with DSC. Bland Altman plot showed minimal discrepancy (0.1/0) between AI and reference Dmean/Dmax. Conclusions: The AI-model showed good accuracy for large structures, but developments are required for smaller ones. Auto-segmentation was significantly faster, with minor differences in dose distribution caused by geometric variations

    SERS-Based Evaluation of the DNA Methylation Pattern Associated With Progression in Clonal Leukemogenesis of Down Syndrome

    No full text
    Here we show that surface-enhanced Raman scattering (SERS) analysis captures the relative hypomethylation of DNA from patients with acute leukemia associated with Down syndrome (AL-DS) compared with patients diagnosed with transient leukemia associated with Down syndrome (TL-DS), an information inferred from the area under the SERS band at 1005 c

    Let’s Talk About BiTEs and Other Drugs in the Real-Life Setting for B-Cell Acute Lymphoblastic Leukemia

    No full text
    Background: Therapy for acute lymphoblastic leukemia (ALL) are currently initially efficient, but even if a high percentage of patients have an initial complete remission (CR), most of them relapse. Recent data shows that immunotherapy with either bispecific T-cell engagers (BiTEs) of chimeric antigen receptor (CAR) T cells can eliminate residual chemotherapy-resistant B-ALL cells. Objective: The objective of the manuscript is to present improvements in the clinical outcome for chemotherapy-resistant ALL in the real-life setting, by describing Romania's experience with bispecific antibodies for B-cell ALL. Methods: We present the role of novel therapies for relapsed B-cell ALL, including the drugs under investigation in phase I-III clinical trials, as a potential bridge to transplant. Blinatumomab is presented in a critical review, presenting both the advantages of this drug, as well as its limitations. Results: Bispecific antibodies are discussed, describing the clinical trials that resulted in its approval by the FDA and EMA. The real-life setting for relapsed B-cell ALL is described and we present the patients treated with blinatumomab in Romania. Conclusion: In the current manuscript, we present blinatumomab as a therapeutic alternative in the bridge-to-transplant setting for refractory or relapsed ALL, to gain a better understanding of the available therapies and evidence-based data for these patients in 2019
    corecore