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Abstract: Acute leukemias (both myeloid and lymphoblastic) are a group of diseases for which each 
year more successful therapies are implemented. However, in a subset of cases the overall survival (OS) 
is still exceptionally low due to the infiltration of leukemic cells in the central nervous system (CNS) and 
the subsequent formation of brain tumors. The CNS involvement is more common in acute lymphocytic 
leukemia (ALL), than in adult acute myeloid leukemia (AML), although the rates for the second case might 
be underestimated. The main reasons for CNS invasion are related to the expression of specific adhesion 
molecules (VLA-4, ICAM-1, VCAM, L-selectin, PECAM-1, CD18, LFA-1, CD58, CD44, CXCL12) 
by a subpopulation of leukemic cells, called “sticky cells” which have the ability to interact and adhere 
to endothelial cells. Moreover, the microenvironment becomes hypoxic and together with secretion of 
VEGF-A by ALL or AML cells the permeability of vasculature in the bone marrow increases, coupled with 
the disruption of blood brain barrier. There is a single subpopulation of leukemia cells, called leukemia 
stem cells (LSCs) that is able to resist in the new microenvironment due to its high adaptability. The LCSs 
enter into the arachnoid, migrate, and intensively proliferate in cerebrospinal fluid (CSF) and consequently 
infiltrate perivascular spaces and brain parenchyma. Moreover, the CNS is an immune privileged site that 
also protects leukemic cells from chemotherapy. CD56/NCAM is the most important surface molecule 
often overexpressed by leukemic stem cells that offers them the ability to infiltrate in the CNS. Although 

68

Review Article

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-20-3140


Deak et al. CNS leukemia

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(1):68 | http://dx.doi.org/10.21037/atm-20-3140

Page 2 of 23

Background on the central nervous systems 
(CNS) involvement in acute leukemias

Therapy for  acute  leukemias ,  both myeloid  and 
lymphoblastic, has become increasingly effective in the past 
decade (1-7). This is explained by the increasing efforts of 
personalizing chemotherapy treatment and supportive care 
that continuously adapts to initial diagnostic and progression 
of the disease, and which has resulted in better quality of life 
and higher overall survival (OS) rate in leukemic patients 
(8-11). Despite, improvements made to the diagnosis and 
treatment of both forms of acute leukemia: lymphoblastic 
(ALL) and myeloid (AML), the CNS involvement is still 
limiting long-term treatment, remaining one of the most 
severe complication and the primary causes of mortality 
(12,13). CNS involvement is detected either at the initial 
diagnosis or it develops at relapse. This event happens in 
30% of relapse cases and it represents the main hurdle that 
leads to treatment failure (14). 

In  acute  lymphoblast ic  leukemia  (ALL),  CNS 
involvement is more common and about 5% of adults are 
presenting with CNS leukemia at initial diagnosis, having 
a shorter OS in comparison with patients, who did not 
develop CNS leukemia (15,16). There is still no consensus 
regarding the rate of development of CNS disease in ALL 
even through this is a major therapeutic obstacle. It is 
generally accepted that a third of the relapse cases involve 
CNS in pediatric ALL (17,18). The established way of 
assessing CNS leukemia is lumbar puncture (LP). However, 
practitioners have to pay attention to the fact that in 10–
30% of LPs there is a danger of blood entering into CSF 
due to the trauma caused by the needle, this is defined as 
traumatic LP (19). Some studies concluded that traumatic 
LP increases the chances of disease recurrence in ALL (20), 
especially in high-risk patients (21). The choice of during an 
LP only if symptoms are present in ALL is also a strategy to 

decrease the risk of recurrence. If LP should be introduced 
as routine check-up in adult ALL, then the procedures 
from childhood ALL or AML should be introduced, such as 
intrathecal cytarabine given from the beginning (22).

It is generally considered that AML cells rarely reach 
the CNS and develop tumors, (23,24), whereas in pediatric 
patients (25) this is a common event. This pattern might not 
accurately reflect the reality, as many times CNS involvement 
in adults remains undiagnosed (12,23). The main reasons 
behind undiagnosed CNS leukemia in adult AML is related 
to the lack of routine diagnostic LP; this procedure being 
performed only when CNS signs or symptoms are manifest 
(26,27). This is why in the case of hyperleukocytosis at 
diagnosis, even in the absence of other symptoms, the 
performance of a LP evaluation is advised (17,18). Still, 
attention must be paid to the risks of traumatic LP. CNS 
leukemia is a frequent complication of acute leukemia having 
some specific cytogenetic anomalies. In AML, chromosome 
16 inversion (resulting core binding factor beta-myosin 11 
heavy chain fusion protein) and chromosome 11 abnormalities 
[trisomy with gene amplification, including myeloid 
lymphoid leukemia (MLL)] represent risk factors for CNS  
leukemia (28). Still there are some reports the inv(16)/
t(16;16) is a favorable prognostic marker in AML (29). In 
preB-ALL, t(1;19) translocation is a risk factor for CNS 
relapse and these cells are found to express MER kinase (30). 
MER positive ALL-blasts enter G0/G1 phase when co-
cultured with CNS derived cells (31). In ALL with t(1;19) 
translocation is found the highly encountered E2A-PBX1-
rearrangement (30), with increased IL7R expression on the 
blasts surface and CNS leukemia incidence (32). 

CNS involvement during AML treatment is uncommon, 
and the incidence of CNS leukemia has decreased since the 
incorporation of high dose cytarabine, that is, as mentioned 
above, used as a preventive measure in AML. This drug has 

asymptomatic or with unspecific symptoms, CNS leukemia should be assessed in both AML/ALL patients, 
through a combination of flow cytometry and cytological analysis of CSF. Intrathecal therapy (ITT) is a 
preventive measure for CNS involvement in AML and ALL, still much research is needed in finding the 
appropriate target that would dramatically lower CNS involvement in acute leukemia. 
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beneficial effects due to its ability to penetrate the blood-
brain barrier (33), however, this is also the main reason for 
severe CNS toxicity induced by this drug (34,35). Prior to 
the use of high dose cytarabine, meningeal disease was seen 
in up to 20% of children and 16% of adults with AML (33). 
In a review comprising information from 3261 adult patients 
enrolled in German clinical trials, CNS involvement was 
documented in 0.6 % of adult patients at the time of initial 
presentation and in 2.9% relapse cases (23). However, in 
infants, potential CNS involvement was identified in 29% of 
cases (12).

In order to better understand the development of 
CNS involvement in acute leukemia (both acute myeloid 
leukemia (AML) and acute lymphoblastic leukemia (ALL) it 
is important to analyze the problem from two perspectives: 
the biology of the disease and the clinical characteristics of 
CNS involvement. 

We present the following article in accordance with the 
Narrative Review reporting checklist (available at http://
dx.doi.org/10.21037/atm-20-3140).

Method used for literature search 

In the current narrative review, we looked at the literature data 
on the mechanisms behind CNS invasion by ALL and AML 
cells and the clinical significance of CNS leukemia. All of the 
included studies were written in English. The vast majority of 
researched literature was focused on AML and ALL. 

Cell biology of CNS penetration by the leukemic 
blast cell

CNS involvement in acute leukemias can either be occult (23) 
or clinically manifested as leukemic meningitis (36), or myeloid 
sarcoma (37); the first one being most frequently encountered.

It can be present at the initial diagnosis, but also can 
develop at any time during the natural course of disease, 
even after years of complete remission, as isolated CNS 
relapse (38). There is great variability in the incidence of 
CNS involvement between various forms of acute leukemia, 
but in recent years the trend has continuously increase 
thus stimulating a more in-depth analysis over this kind of 
extramedullary disease (EMD). 

The role of leukemia stem cells (LSCs) in the development 
of CNS leukemia

Acute leukemia is maintained by a pool of self-renewing 

cells denominated leukemic stem cells (LSCs), that express 
CD34+CD38− and increased aldehyde dehydrogenase 
activity (39) with properties similar to other cancer stem cells 
(CSC) (40-44). The LSCs can originate from hematopoietic 
stem cells (HSCs) or from committed cells that have an 
inner higher self-renewal potential (45). In ALL, there is a 
strong possibility that these stem cells originate from fully 
differentiated cells that during malignant transformation 
re-gain stem-like properties. The LSCs in pediatric ALL 
were discovered committed cells (46). In AML LSCs are 
responsible for the maintenance of minimal residual disease 
which is responsible for treatment failure and disease relapse 
in AML. The reason behind the observed results is that the 
LSCs remain in G0 state and have high self-renewal capacity. 
Two pro-malignancy events have to happen in order for a 
malignant LSC to develop. The LCSs then “mature” into 
leukemic progenitors, then leukemic blasts, which are the 
most often therapeutic targets. However, as long as the LSCs 
pool is maintained, the therapeutic death of leukemic blasts is 
insufficient (47). 

The pathway of CNS entering of leukemic cells

The leukemic cells, that proliferate (48) and infiltrate 
various tissues in the body (49), have a lot of properties in 
common with normal hematopoietic progenitors, especially 
a population of cells, called LSCs (49,50) or mature cells 
(e.g., activated monocytes), that are further explored. In 
order to access CNS, leukemic cells can move along the 
walls of the vascular channels connecting the bone marrow 
of the skull bones and vertebrae with the pachymeninges, 
cross the vascular endothelium by transendothelial 
migration or endothelium destruction, diffusely infiltrate 
the arachnoid, migrate and intensively proliferate in CSF 
and consequently infiltrate perivascular spaces and brain 
parenchyma (Virchow-Robin space) (51). This is caused 
by increased hypoxia and angiogenesis in the bone marrow 
microenvironment. The newly formed blood vessels 
are incapable to supply enough oxygen and thus cause 
general hypoxia, which creates a feed-back flop to sustain 
continuous new blood formation and increased vascular 
permeability (52). 

The role of adhesion molecules in CNS leukemia 
development

Adhesion molecules in AML
Leukemic cells express high levels of adhesion molecules, 
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that are also expressed by normal myeloid or lymphoid 
lineage cells. Thus, these cells are considered “sticky cells” 
and have an increased ability to adhere to endothelial 
surfaces, a fact that can explain leukostasis in narrow blood 
vessels (42-45). In AML, cells can express all classes of 
adhesion molecules, more often identified being VLA-4 
(53,54), VLA-5 (55), LFA-1 (56,57), MAC-1 (58), L-selectin 
(59,60), VCAM-1 (57), ICAM-1 (56), PECAM-1 (61), 
CD34 (62,63), CD44 (64,65) and CD56 (66). 

New insides regarding blast cells extramedullary 
dissemination are given by the study of myeloblast 
endothelium interactions (67-70).  Unlike normal 
myeloblasts or neutrophils, the AML leukemic blast cells 
can migrate through the endothelium when co-cultured 
with endothelial cells in a Transwell assay (71). 

Numerous studies have demonstrated that blast cells 
secrete cytokines like transmembrane TNF-alpha (72) or 
IL-1beta (73) and induce an increase in E-selectin (74), 
P-selectin (75,76), ICAM-1 and VCAM-1 expression 
on endothelial cells (71), in a time dependent manner. 
Otherwise, they can also activate the migration of 
endothelial cells. In AML, an increased heterogeneity of 
adhesion molecules expression between FAB subtypes exist, 
that varies from patient to patient. Studies report a higher 
incidence of MAC-1 (CD11b/CD18) integrin expression 
in M4 and M5 subtypes (58), where CNS disease or other 
kinds of EMD are more frequent (77-80). MAC-1 has 
a broad binding specificity, mediating the interaction of 
macrophages with the extracellular matrix (81), granulocytes 
and collagen from extracellular matrix (82) and macrophage 
with other cells through ICAM-1, during activation (83). 
MAC1 plays major roles in transendothelial migration and 
tissue infiltration in the case of neutrophils (84). 

Despite migration, adhesion molecules have a lot of other 
functions. LSCs enter a quiescent state in vascular niches in 
the bone marrow, but probably other niches too, and they 
do so by the expression of adhesion molecules like VLA-4 
and CD44 (85). The integrin alpha4-beta1 (VLA-4) induces 
NF-kB signaling after binding to VCAM-1 molecules on the 
surface of stromal cells and increases the chemoresistance, 
while CD44 mediates the attachment of stromal cells to 
hyaluronic acid (86). VLA4 can also interact with other 
molecules as are osteopontin and fibronectin (87,88). 

Adhesion molecules may also be involved in cell growth, 
proliferation, survival and migration (31,89,90). The most 
common AML adhesion molecules with pro-malignant 
effects are: ligand binding to integrins triggers SRC  
kinase (91), FAK (focal adhesion kinase) (92) and ILK 

(integrin-linked kinase) activation (93).

The role of adhesion molecules in ALL
Leukemic cells in ALL also express adhesion molecules, 
including beta-1 integrin (94), beta-2 integrin (CD18) (95) 
LFA-1 (96), LFA-3/CD58 (97,98), ICAM-1 (97), CD44 (99) 
and L-selectin (100). New research showed that ALL blasts 
express alpha 6-integrin and move along laminin in the 
microvessels connecting skull and vertebral bone marrow 
with the meninges (101). VE-cadherin and PECAM-1 
co-expression in T-ALL cells enhances transendothelial 
migration (102).

Stefanidakis et al. showed that a supramolecular 
structure called invadosome is assembled at the contact 
points between leukemic blasts and endothelial or stromal 
cells. The invadosome contains proMMP-9 (gelatinase B) 
attached to alphaMbeta2 integrin and serves as an enzymatic 
machinery for tissue invasion that degrades extracellular 
matrix components (103). 

B-cell ALL CNS leukemia is primarily a meningeal 
disease (104,105). The cerebrospinal fluid (CSF) of healthy 
humans contains mainly T cells (90%), as well as B cells 
(5%) and monocytes (5%) (106). ALL relapse can occur in 
bone marrow or extramedullary sites (less frequent), with 
higher incidence in ALL-blast sanctuaries and approximately 
7.5–15% of relapses occur in the CNS (107). As follows, the 
clonal origin of CNS leukemia in ALL is called ‘neurotrophic 
subclone’ (108-110). The bone marrow of patients with CNS 
relapse may have contained at diagnosis small subpopulations 
of leukemic blasts with a CNS-prone profile, that translates 
into SCD (stearoyl-CoA desaturase) positiveness (111), or 
increased expression of SPP1 (secreted phosphoprotein 1), 
the gene encoding for osteopontin (112). ALL leukemic 
stem cells engraft in vascular niches (not in perivascular cells) 
expressing CXCL12 (113) and E-selectin (114). 

The leukemic cells acquire irregular shapes in brain 
parenchyma. In CNS-derived leukemic cells, the genes 
related to cell cycle and oxidative phosphorylation are 
downregulated. They compared the transcriptome of 
CNS, BM and CSF-derived B-ALL leukemic cells and 
found that gene sets uniquely upregulated in CNS-derived 
leukemic cells included those associated with hypoxia and  
glycolysis (115). CNS-derived ALL leukemic cells are 
adapted to hypoxia, a mechanism that was rewarded with 
the 2019 Nobel Prize in Medicine or Physiology (116,117). 

The acquired capacity of malignant transformed 
leukemic cells is related to the secretion of cytokines and 
overexpression of their receptors. 
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CXCL12/CXCR4 axis is central in physiological 
hematopoietic cells development (118), but it also seems to 
play a role in leukemic cells neurotropism. In vitro studies 
revealed that astrocytes (119), choroid plexus epithelial cells 
(120) and meningeal cells (121) secrete CXCL12 and B-ALL 
blasts move toward and adhere to them (120), CXCL12 
appears to promote B-ALL blasts migration across brain-
CSF barrier (120,122), but possibly also across BBB (120). 
CCR7/CCL19 is considered essential for CNS infiltration 
in Notch1-induced T-ALL, but not seem to be true for 
other ALL types (123). In preB-ALL, pediatric patients 
with IL7R overexpression have a high CNS leukemia 
incidence during disease evolution, especially in relapse (32). 
CXCR3 and PSGL-1 enhance BBB penetration as proven 
by in vitro studies. In ALL, the expression of these surface 
proteins is stimulated by IL-15 (124). 

The role of hypoxia and VEGF secretion in the 
development of CNS leukemia 

VEGF synthesis was identified in leukemic cells of both 
AML and ALL (125). In AML, high levels of VEGF-A 
are associated with disease diagnostic (126), and shorter 
OS (127). In patients with ALL, no correlation has been 
identified between plasma VEGF levels and CNS leukemia, 
but in CSF the VEGF level was significantly increased 
in patients with CNS involvement (128-131). VEGF 
expression is higher in leukemia cells already infiltrated 
in CNS, in comparison with cells from BM (132). Studies 
on CNS-derived leukemic cells found that VEGFA is 
one of the most upregulated hypoxia-induced genes. 
Despite promoting angiogenesis, VEGF can also increase 
endothelial permeability, including BBB disruption, by 
acting directly on endothelial cells (101). Indirectly, VEGF 
acts on its own receptors on ALL cells and stimulate MMP-2  
and MMP-9 secretion (133). VEGF levels in ALL are 
increased in patients with relapse compared with newly 
diagnosed cases (134). 

In vitro studies revealed that ALL-derived exosomes 
increase BBB permeability and VEGF secretion in 
astrocytes (135). When analyzing CNS-derived leukemic 
cells, reports show that this cell population has distinctive 
transcriptional signature. These cells, apart from bone 
marrow (BM)- and CSF-derived cells, downregulate 
genes involved in cell cycle and oxidative phosphorylation 
and increase the expression of genes related to hypoxia 
and glycolysis [VEGFA, hexokinase 2 (HK2), pyruvate 
dehydrogenase 1 (PDH1)] (115). 

Brain parenchyma appears to be seeded by LSCs 
that adapt to hypoxic microenvironment of perivascular  
spaces (136). They modify the neural stem cell niches and 
maintain their stemness and quiescence there, also protected 
from chemotherapy (137). Brain microenvironment has 
major influence on leukemic cells transcriptome profiling. 

Gaynes et al. found that CNS-derived leukemia cells 
have high PBX1 expression. Further in vitro assays showed 
that PBX1 is upregulated in a co-culture models of preB-
ALL cells with BBB epithelial cells and choroid plexus 
epithelial cells. Moreover, these leukemic cells having 
increased cytarabine and methotrexate chemoresistance. 
Despite chemoresistance, inducing PBX1 overexpression 
leads to increased CNS infiltration in vivo (138). CNS is 
one of the ALL-blast sanctuaries and once LSCs get there, 
they are protected from chemotherapy (107) and the natural 
killer (NK) cells from the patient’s immune system thus 
LSCs can persist as MRD in CNS or can rapidly develop 
into CNS leukemia (139). Meninges also appear to have 
protective effects on leukemic cells. In vitro studies show 
that adherence of ALL blasts to primary meningeal cells 
leads to increased chemoresistance, decreased apoptosis and 
quiescence (31).

The essential role of CD56 in development of CNS 
leukemia

Cluster of differentiation 56 (CD56), also called neural cell 
adhesion molecule (NCAM) is physiologically expressed 
by NK cells and a subset of mature T cells in the immune 
system (140-143). NCAM is the first adhesion molecule 
identified to have essential roles in both in utero and adult 
neurogenesis, synaptic plasticity and learning (144-147). 
When cells undergo malignant transformation, they 
express at a higher level CD56 and show an aggressive  
behavior (148). Apart from carcinomas with neuroendocrine 
phenotype (149) or tumors of neuroectodermal origin (150), 
well known for CD56 positivity, hematological malignancies 
can also express CD56 in various proportions. NCAM is 
expressed by malignant cells of NK leukemias (151), T-cell 
leukemias/lymphomas (152) and AML (153,154). 

Through alternative splicing, the NCAM1 gene codes 
the synthesis of three isoforms noted as NCAM-120, 
NCAM-140 and NCAM-180, according to their molecular 
weight. All NCAM isoforms contain an N-terminal 
extracellular domain with five immunoglobulin‐like (Ig) 
modules and two fibronectin type III (F3) modules (155). 
Except for NCAM-120, which is GAP-anchored on the 
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cell surface, the extracellular domains of NCAM-140 
and NCAM-180 are followed by a short transmembrane 
segment and a C-terminal cytosolic domain, which is longer 
in the NCAM-180 isoform. In the immune cells, NCAM-
140 is the dominant isoform, but in the neural tissue, they 
are differentially distributed: NCAM-120 isoform only in 
glia, NCAM-180 only in neurons and NCAM-140 isoform 
is expressed in both neurons and glia. It is the first adhesion 
molecule identified, but information about NCAM 
signaling still remains scarce, especially in immune cells. 
NCAM proteins form cis dimers on the cell surface but 
can also form tetramers after trans-interaction with other 
NCAM dimers on adjacent cells (156-158).

A link between NCAM and FGFR signaling was reported 
and it appears that the tetrameric form of NCAM triggers 
the activation of FGFR by lateral associations through the 
membrane. If NCAM ligands are present, spectrin mediates 
the colocalization of NCAM proteins with other molecules 
in lipid raft areas, leading to Fyn kinase activation, that in 
turn activates FAK (159-161). 

Some of the pathways identified as being activated 
downstream from NCAM are Ras/MAPK (162), PLC/DAG/
AA (155,163) and PI3K/Akt pathways (164), as inhibition 
of these key enzymes impairs the neurite outgrowth. 
Studies also noted the activation of PKC and PKA with 
consequent increase in intracellular calcium (165) and cAMP 
concentrations (166), following NCAM activation. The 
neurite outgrowth appears to depend on CREB (167,168), 
c-Fos (168) and NF-kB activation (169). These transcription 
factors are final targets in NCAM signaling. 

CD56 is expressed on various cells from the immune 
system, not only by NK cells, but also by some populations 
of γδ T cells, CD8+ T cells, monocytes and monocyte-
derived IL-15 dendritic cells (146). Little is known about 
NCAM function in the immune system, but it appears that, 
in NK cells, NCAM expression confers a high mobility 
potential (170), mediates NK cells adhesion to CD56 
positive tumor cells thus amplifying the cytotoxic effects 
of NK cells (146) and it can also function as a pathogen 
recognition receptor (PRR) (171). In that context, NCAM 
expression on T cells positively correlates with the 
expression of CD16, NKG2A/D, NKp44/46, CD122, and 
DNAM-1 and with high intracytoplasmic perforin and 
granzyme B content (146). The intestinal T cell population 
has a high expression of CD56 and it has a stimulatory 
function on proliferation in CD56− T cells from peripheral 
blood (172). 

CD56-bright NK cells only, and not the CD56dim 

subset, display CD117 (c-Kit) expression, high affinity 
receptor for IL-2 and CCR7 on their surface and express a 
higher level of CXCR3 (173).

The CD56 bright NK cells are more potent producers 
of the following cytokines: IFN gamma, TNF alpha, GM-
CSF, IL10, IL13. As follows, CD56 serves as a diagnostic 
marker for NK-cell malignancies, but subpopulations of 
cells in any other hematological malignancy can also be 
positive for CD56. It is not completely understood whether, 
CD56 expression is inherited from the original normal cell, 
is a results of oncogenic mutations in malignant cells or 
the tumor microenvironment induces CD56 expression on 
leukemic cells (174). 

Fischer et al. reported TRC [transfer RNA cysteine 4 
(anticodon GCA)] gene rearrangements in almost all cases 
of CD56+ T-ALL and concluded that CD56+ leukemias 
could emerge from a bispecific T/NK progenitor (152).

Not known for leukemias, IL-15 serves as a powerful 
cytokine to boost CD56 expression in NK cells (175) 
and other immune cells, such as CD8+ T cells (176), the 
downstream signals being carried by Ras/MAPK, PI3K/Akt 
and JAK/STAT pathways (177). Fuhrmann et al. analyzed 
CD56 expression in a cohort of T-ALL patients. The 
genetic mutations found in the CD56+ group, that carry the 
mutations NOTCH1, PTEN and FBXW7, appear to have 
a similar distribution as for CD56− group such that they 
cannot link that immunophenotype to any genetic mutation. 
Also, the clinical progression of ALL showed significant 
differences only when patients are stratified according to 
CD56 expression profile (178). 

Because AML show CD56 positivity in about 20% of 
cases and RUNX1 mutations are so frequent, Gattenloehner 
et al. also concluded that these mutations increase CD56 
expression and disease aggressiveness (179). When 
RUNX1-coded wild-type p48 isoform is overexpressed, it 
exerts a potent stimulatory effect on NCAM gene promoter 
and, together, the two proteins increase BCL-2 expression, 
thus protecting the AML cell from apoptosis. New RUNX1 
isoforms were characterized (p38a, p30, and p24) and they 
caused the underexpression of NCAM gene (179). 

CD56 is expressed on a small subset of T-ALL cell 
population of non-thymic phenotype and frequent T 
receptor rearrangement. Although the patients did not show 
any differences at initial diagnosis, a smaller proportion of 
them entered into complete remission in comparison with 
CD56− T-ALL patients and developed resistance more 
often (152). 

For instance, Alegretti et al. report a mean OS of only 
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4.0 months in CD56+ patients when compared with 
14.5 months in CD56- patients with AML (66). CD56 
expression has with a higher frequency in subtypes of AML 
with aggressive behaviors, such M4 and M5 types (66), or 
AML with t(8;21) translocation (180). 

In acute promyelocytic leukemia (APL), even if it is 
rarely expressed, CD56 was correlated with high WBC 
count, lower platelet count, severe intravascular coagulation, 
expression of CD2, CD7, CD34 and CD117, shorter event-
free survival (EFS) and increased relapse incidence (181,182). 
CD56 positivity in acute leukemias was also found to increase 
the tendency to develop EMD or relapse (183). EMD show 
high frequency in M4 and M5 types of AML (184) and in 
AML with t(8;21) translocation (185). 

Many studies associated CD56 positivity with increased 
incidence of CNS leukemia at diagnosis, but also at any time 
during disease, both in myeloid (183), and lymphoblastic 
acute leukemias (140,186). 

CD56 could serve as a predictive marker for CNS 
leukemia. ALL patients with CD56+ cells developed ALL 
more rapidly and was more severe, considering that the 
OS of ALL patients with CNS involvement was lower for 
CD56+ cases (140). CD56 presence was associated with 
CNS leukemia at initial presentation with 19% of cases in 
CD56+ ALL patients versus 4% in CD56- ALL patients. 
Even in the case of treatment with 8 consecutive cycles of 
cyclophosphamide the CNS leukemia developed more often 
in CD56+ ALL cases. However it should be considered 
that there were only 16 CD56+ cases versus 184 CD56− 
case (186). A study analyzing the role of CD56+ in T-ALL 
concluded that there was no difference in CNS leukemia 
between CD56+ or CD56− T-ALL cases (152). A case 
presentation also reported the expression of CD56, along 
with CD34, CD19, CD79s in B cell precursor ALL (BCP-
ALL) who had KMT2A-AFF1 gene rearrangement (187). 

In AML, as stated above, there are less frequent cases 
of CNS involvement and the role of CD56 status is still 
debatable. However, CD56 positivity in AML leukemic 
blasts was associated with higher incidence of extramedullary 
involvement, including CNS infiltration (183). CNS relapse 
rate, and overall relapse rate too, are higher in CD56+ AML 
patients (180), especially second remission (188) including 
APL, especially if associated with high levels of WBC (189). 
According to a case report, in APL immunophenotype 
after CNS relapse, the cells express CD34 and CD56. 
Thorough a reanalysis of the bone marrow aspirate at the 
initial diagnosis a small subpopulation of CD34 and CD56 
positive blasts was discovered (190). A careful analysis of 

CD56 expression at diagnosis could serve as a predictive 
marker to assess CNS relapse risk after complete molecular 
response. This is caused by CD56 expression on leukemic 
blasts that signals for the production of cytokine receptors 
that interact with cytokines secreted by astrocytes or other 
cells in the brain. Through this chemoattraction, leukemic 
cells infiltrate into the perivascular tissue and migrate in 
the neural tissue by CD56 homophilic interactions. These 
blasts also manipulate the microenvironment and establish 
neural stem cell niches. Their maintenance in such leukemic 
niches in a quiescent state could theoretically explain the 
high incidence of isolated CNS relapses, where cells show 
CD56 positivity (191). 

Diagnosis and management of CNS disease in 
acute leukemias

Clinical presentation of CNS leukemia

As stated in the introduction, CNS involvement in acute 
leukemias remains under-diagnosed. The reason behind this 
is that the particularities of many cases are still overlooked, 
and current diagnostic tools are many times insufficient to 
detect the beginning of this complication. Symptomatic 
manifestations of CNS infiltration, although rare, are often 
subtle and attributed to other causes, as hyperleukocytosis, 
treatment related neuropathy, infections or brain 
parenchymal metastases (192). These symptoms depend of 
the leukemic infiltration and the number of sites involved. 

In most cases, CNS involvement in acute leukemia 
is asymptomatic. Symptoms and signs on a neurological 
examination are present in half of patients with ≥5 
leukocytes in the CSF. Moreover, 80% of patients with 
leukocytes in CSF below this number do not have any 
symptoms (193-195). The neurological symptoms depend 
on the localization of blasts and are many times atypical, 
such as headache, loss of balance, fainting, mood swings, 
seizures, nausea/vomiting and papilledema (12,196). Cranial 
nerves involvement is less common and can cause double 
vision (197), facial numbness, deafness, blindness, and 
swallowing difficulties (192). Another rare symptom, often 
overlooked, is the sudden onset of obesity, which can be 
caused by hypothalamic localization of leukemic cells (198). 

Symptoms of spinal cord involvement are even more 
difficult to identify. Similar to CNS leukemia, different 
locations give different symptoms from back pain, legs or 
arms weakness, numbness or pain, and loss of bladder or 
bowel control (199,200). 
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Seldom, distinct tumors formed of infiltrated leukemic 
cells can be detected throughout the CNS (201). 

CNS leukemia-diagnostic tools

At the MRI analysis, CNS leukemia can be seen as dispersed 
lesions in the brain with round edges and local edema that 
give an equal T1 signal and a long T2 signal. Typically, 
a contrast agent is used (202,203). However, many times 
it is hard to differentiate between these lesions and CNS 
infections or neurodegenerative disorders, which are also 
common in patients with acute leukemia (204,205). These 
imaging challenges, associated with the difficulties faced 
by the LP analysis oftentimes delay the diagnostic and the 
beginning of treatment in CNS leukemia patients, much to 
the disadvantage in the quality of life and survival of these 
patients (206,207). 

The obstacles faced by pathological assessment are 
related to the risks of an LP analysis, especially traumatic 
LPs. However, nowadays new techniques are developed 
that may help minimize the risk, such as stereotactic biopsy 
(208,209). If this technique would be learned by more 
specialists, CNS leukemia would be diagnosed faster and 
more accurate (205). 

Development of CNS leukemia involves a series of 
clinical characteristics at initial presentation or development 
of these characteristics over the course of the disease, in both 
ALL and AML. In AML, a high initial leukocyte count has 
been reported to be predictive of a CNS involvement (210).  
Sixty-eight of patients with elevated initial WBC count 
developed CNS leukemia, therefore screening LPs should 
be routinely obtained during induction therapy in these 
patients. Leukemia cells in the CSF at diagnosis seems 
to also be predictive for CNS infiltration, along with 
extramedullary AML without CNS localization. Men more 
frequently developed CNS dissemination than women at 
a three to one ratio. Another detected risk factor for CNS 
involvement is the presence of internal tandem duplication 
(ITD) in FLT3 gene associated with NPM1 gene mutations 
in leukemic cells (23,211).

It is essential to point out that risk factors and 
associations, although useful can still not replace the use 
of an LP and subsequent CSF pathological analysis. This 
remains the golden standard, which must be performed 
at the slightest suspicion of CNS involvement and 
whose technical application should be continuously  
improved (192). The difficulties raised by the technique 
start from the performance of LP, which can show high 

opening pressure. This is continued during sample 
processing, during which several indicators of CNS 
leukemia can be observed, but these are still not enough to 
put a diagnostic more than 5/mm3 white blood cell count, 
less than 60 mg/dL glucose and more than 50 mg/dL  
protein level. The diagnostic is formulated only after 
leukemic cells are detected on the analyzed slides of  
CSF (192). Still, many times the test give false negative 
results (212), due to the fact that there infiltrated leukemic 
cells are in very small number and they all circulate in a 
large volume of CFS from which only a small volume is 
taken; as follows it is very easy to sample CSF without 
malignant cells. In addition, the pathologies must be very 
accustomed with the morphology of leukemic cells, since 
these can be easily confused with normal white blood cells. 
In order to increase the sensitivity of CSF analysis, repeated 
LPs are recommended. The possibility of malignant cells 
coming from a solid tumor that has metastasized to the 
brain should also be eliminated (213). 

In regard to the imaging techniques the most commonly 
used are computed tomography (CT) and gadolinium MRI 
(214-216). MRI is often preferred to CT (217). During 
initial MRI scanning, a T1, T2 weighted sequences with fat 
suppression are used to scan the entire CNS. Still, it was 
found that this imaging analysis can only detect 44% of 
B-cell CNS leukemia (218). 

Flow cytometry immunophenotyping (FCI) is a very 
reliable alternative to cytomorphology and the combination 
between the two can significantly increase the chances of 
CNS detection. This is because FCI can detect leukemic 
blasts even in small number (219). Flow cytometry was used 
successfully in the detection of CNS involvement in ALL 
and can successfully distinct between low risk and high risk 
patients (220). This technique is very useful in detecting 
minimal residual disease thus proving to be a powerful tool 
in the monitorization of leukemic patients, by being able 
to detect 1 abnormal cell from 10,000 events (221-223),  
however much attention must be paid to sampling, storage 
and processing (224,225). First the CSF must be collected 
in tubes that do not contain anti-coagulants (such as 
EDTA, heparin treated tubes). Secondly, analysis must be 
performed in maximum 72 h and prior to analysis CSF 
must be centrifuged and only the pellet or the bottom 
phase should be inserted into the flow cytometer (226-228). 
Besides these, it is recommended to use a combination of 
6–9 antibodies (229). Due to the ability to concentrate the 
sample, and high sensitivity, flow cytometry is sometimes 
considered to be superior cu the commonly used CSF 
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pathology (226). FCI of the CSF increased the detection 
rate of CNS involvement of ALL approximately two 
times compared to cytomorphology. FCI of CSF is a very 
reliable method to determine CNS leukemia in cases of 
low cellularity. The status of “indeterminate cases” is low, 
meaning 8.3% and it includes technical flaws such as very 
low number of cells, inappropriate stanning, insufficient 
normal population of cells for appropriate comparison (230).

 Histology is also predictive of a CNS involvement, with 
significantly higher incidence found among monocytic M4 
and M5a. Among risk factors, inversion of chromosome 
16, chromosome 11 abnormality, trisomy 8 (28), serum 
lysozyme (<30 IU) (231) and high lactate dehydrogenase 
activity (>25,000/mm3) (232) was also correlated with CNS 
leukemia. 

In ALL, the same risk factors are valid: younger age (233), 
presence of leukemic cells in CSF (234) or elevated lactate 
dehydrogenase (232). In addition, mature B-ALL and T cell 
phenotype is correlated with increased incidence of CNS 
infiltration. The presence of cytogenetic abnormalities, may 
it be t(9;22) or t(4;11), are also high-risk markers (235).

Therapeutic option for CNS leukemia

CNS-targeted therapy significantly increased overall and 
disease-free survival in hematological malignancies (236). 
Usually, these therapies refer to intrathecal chemotherapy 
(IT) or CNS targeted radiotherapy (237). Nowadays, 
most protocols restrict radiotherapy to high-risk patients. 
In addition the dose are continuously adapted to the 
progression of the disease, with the scope of regaining 
normal hematological  physiology in the patient’s 
organism as soon as possible. Elimination of MRD and 
monitorization of immune privileged sites, such as CNS are 
also incorporated.

As stated above, protection of immune privileged sites, 
such as CNS need careful monitorization. Because of the 
limited penetration of cytostatic drugs for the treatment 
of leukemia across the BBB, the CNS is like a protective 
environment for the leukemic cells. Different cell types of 
the neurovascular unit including vascular cells (endothelium 
and mural cells), glia (astrocytes, microglia), and neurons 
contribute to regulation of BBB permeability. The insufficient 
CNS accumulation of the drugs explains why CNS relapse 
is reported in 30% of adult patients with ALL (238)  
thus early measures must be taken to prevent new tumor 
formations in the brain (239), such as: IT, high‐dose systemic 
chemotherapy and craniospinal irradiation. The role of 

cranial craniospinal radiotherapy has become controversial 
because of its neurologic adverse events. However, recent 
studies state that IT and high-dose chemotherapy are enough 
to prevent CNS leukemia (240-243).

When assessing initial intrathecal therapy (ITT) followed 
by cranial irradiation compared with further IT, there is no 
significant differences between the groups in the overall 
event rate, the annual event rate, OS at 10 years. There were 
fewer isolated CNS relapses in the cranial irradiation group 
(4.9%) than in the ITT (7.1%) (P=0.03) (242,243). When 
comparing the addition of intravenous methotrexate to long-
term ITT (up to 12 doses) or radiotherapy with ITT (up to 9 
doses), there was a significant reduction of 17% (P=0.003) in 
the annual event rate with intravenous methotrexate. EFS at  
10 years was higher in the group given intravenous 
methotrexate (68.1% versus 61.9%). The OS rates at  
10 years did not differ significantly. The annual rates of non-
CNS relapses were 17% lower in the methotrexate group 
(P=0.02), while the CNS and isolated CNS rates were both 
non significantly lower in this group (244-249).

A randomized control study concluded that the triple 
ITT, in comparison with intrathecal methotrexate (IT 
MTX) reduces the risk of isolated CNS leukemia, but 
the OS of patients remains lower than in the case of IT 
MTX. This is reasoned by the fact that leukemia inducible 
tumors can also form in other sites of the body and these 
are often overlooked. A combination of ITT and high 
doses of systemic chemotherapy are recommended. When 
comparing cranial irradiation combined with short-term 
ITT versus intravenous methotrexate combined with 
short-term ITT, neither the 10-year survival, nor EFS 
was significantly different between the groups. The CNS 
relapse rates were 62% lower in the cranial irradiation 
group (P=0.00005). When comparing different doses of 
radiotherapy (24 versus 18 or 21 Gy) combined with short-
term ITT, there were no significant differences between the 
doses on any measure. Still, when comparing radiotherapy 
combined with short-term ITT with intravenous 
methotrexate combined with long-term ITT, there were no 
significant differences between the groups on any measure 
(250,251). Thus, radiotherapy can be replaced by long-term 
ITT and intravenous methotrexate as it reduces non-CNS 
relapses.

It is highly important for the drugs used in CNS 
preventive/treatment chemotherapy to be able to cross 
the BBB and distribute uniformly in CNS. The best 
known options until now are cytarabine and methotrexate 
(238,252). Steroids are also frequently used in addition to 
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chemotherapeutic treatment. In this case dexamethasone 
is preferred to prednisone, because of a higher stability 
(253,254) and reported ability to lower CNS recurrence 
to 2% (255). Adequate concentration in CSF can be 
reached with etoposide and 6-mercaptopurine systemic 
administration, as well as L-asparaginase (256-258). 
Although the single use of chemotherapy is enough to 
prevent CNS relapse, this is often avoided, due to the 
severed side effects given by this treatment choice.

Treating a B-cell ALL with CNS disease—an 
example

As a proof-of-concept, of the theoretical background 
presented, we depict the case of a 24-year-old male 
presented in June 2013 for bilateral laterocervical 
adenopathy, associated with slight fever, dysphagia, cough, 
and unexplainable weight-loss. No other indications of 
a disease were present. Physical examination certified 
adenopathy, of approximately 2 cm in the laterocervical, 
submandibular, axillary and inguinal areas and grade 
II splenomegaly. Leucopenia (3.14×103/µL) with 22% 
blasts was detected upon blood analysis and the bone 
marrow aspirate found hypocellularity with maturation 
in granulocytic and erythroblastic lineages, but 60% blast 
cell infiltrate. The immunophenotyping analysis revealed 
a common Philadelphia chromosome negative (Ph-) preB-
ALL (positive for: CD19, CD22, CD10, CD45, HLA-DR, 
CD34, CD33).

The HyperCVAD protocol was started, and the first 
complete remission (CR1) was obtained after the first 
cycle, however with MRD positivity. Clinicians decided 
to treat the MRD+ state with blinatumomab and the 
patient successfully achieved complete molecular response 
after 4 cycles. POMP (6-mercaptopurine, vincristine, 
methotrexate, prednisone) maintenance therapy was 
continued until December 2016, but the disease relapsed 
in July 2017, with 90% blasts in the bone marrow, anemia 
(hemoglobin =9.6 g/dL) and mild thrombocytopenia 
(103×103/µL). Chemotherapy was started again, following 
the same HyperCVAD protocol. However, this time a 
complete hematological response was not achieved, the 
patient remaining refractory with a low, but persistent level 
of blasts in the peripheral blood. Consequently, the family 
was tested for HLA compatibility, but were not compatible; 
as a consequence, he was put on the waiting-list for matched 
unrelated allogeneic HSCT. The Romanian National Drug 
Agency (ANM) approved in December 2017 the initiation 

of a second blinatumomab treatment, the patient being 
by this time in a second complete remission (CR2) after  
2 cycles. Blinatumomab therapy was well tolerated, 
with only mild adverse effects (fever spikes, grade 1 
neurotoxicity), successfully controlled with corticotherapy. A 
severe polyclonal hypogammaglobulinemia was present even 
4 years post blinatumomab treatment (IgG =123 mg/dL,  
normal value 700–1,600 mg/dL), but with no severe 
infectious complications. Soon after CR2, the patient 
proceeded to an allogeneic stem cell transplantation (allo-
SCT). Conditioning chemotherapy regimen consisted 
of busulfan and cyclophosphamide and post-transplant 
immunosuppression was done using methotrexate and 
tacrolimus (259-262). The patient rapidly recovered but 
developed grade 1 hepatic GVHD (graft versus host disease) 
that was treated with tacrolimus and methylprednisolone. 
He achieved complete post-transplant chimerism with no 
residual disease. 

About one year after the allo-SCT, in July 2019, 
the patient presented in emergency with an episode of 
generalized seizures. He also associated dyspnea, sore throat 
and some involuntary movements of the left side of the 
face, but no adenomegaly or hepatosplenomegaly. The CT-
scan was normal, and the CSF fluid was clean. Immunology 
assays and CSF virology tests for VZV, HHV-1, HHV-2,  
CMV and BKV were all negative, possible differential 
diagnoses remaining blinatumomab neurotoxicity and CNS 
relapse (262). A brain MRI was performed showing several 
millimetric demyelinating lesions scattered through the 
white matter, but also one bigger lesion in each precentral 
gyrus. The one in right precentral gyrus had 18/6 
millimeters and his exact position was the superior facial 
area of the motor homunculus, possibly explaining the left 
facial involuntary movements. Both emit high signal in T2-
weighted scan and are also seen in FLAIR scan, suggesting 
irreversible ischemic lesions. The MRI images are found 
in Figure 1. The patient state got worse, even with steroid 
and antiepileptic therapy, and a PET-CT performed in 
Vienna certified the diagnosis of isolated CNS relapse with 
extensive lesions. The positron emission tomography (PET-
CT) images are found in Figure 2. He died soon thereafter, 
in September 2019. 

Conclusions

CNS leukemia is a severe effect, that is the leading cause of 
acute leukemia-related deaths and that is encountered often 
during the progression of this disease. The leukemic cells 



Annals of Translational Medicine, Vol 9, No 1 January 2021 Page 11 of 23

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(1):68 | http://dx.doi.org/10.21037/atm-20-3140

Figure 1 MRI of the CNS at the moment of symptom development. CNS, central nervous system.
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stimulate VEGF and de novo angiogenesis, roll through the 
bone marrow endothelial cells through adhesion molecules 
(the most important being CD56) and enter into the CNS 
through the blood vessels connecting bone marrow to the 

CNS. In the brain parenchyma, these malignant cells can 
travel to different locations thus they give a high variety of 
neurological symptoms. 

Early diagnostic through a more common application 
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Figure 2 PET-CT images of the CNS relapse, at symptom worsening despite therapy. CNS, central nervous system.

BA

of CSF analysis, improved MRI techniques and flow 
cytometry is the first step to an early detection of the 
disease. Practitioners should improve their techniques of 
LP and keep up-to date this the latest developments that 
would prevent complications. At the same time, the role 
of prophylaxis and early treatment is still underestimated. 
The best types of treatment are: targeted chemo-or 
radiation therapy to the CNS and high doses of systemic 
chemotherapy. 

We have decided to show the case presented as a proof-
of-concept. All the modern diagnostic protocols were used 
but physicians still failed to properly establish whether 
the immunocompromised patient has a CNS relapse or 
infection. Thus, a better, more targeted early diagnosis is 
crucial, for instance a combined use of flow cytometry and 
cytomorphology analysis of CSF.
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