1,246 research outputs found

    Entanglement and nonlocality are inequivalent for any number of particles

    Get PDF
    Understanding the relation between nonlocality and entanglement is one of the fundamental problems in quantum physics. In the bipartite case, it is known that the correlations observed for some entangled quantum states can be explained within the framework of local models, thus proving that these resources are inequivalent in this scenario. However, except for a single example of an entangled three-qubit state that has a local model, almost nothing is known about such relation in multipartite systems. We provide a general construction of genuinely multipartite entangled states that do not display genuinely multipartite nonlocality, thus proving that entanglement and nonlocality are inequivalent for any number of particles.Comment: submitted version, 7 pages (4.25 + appendix), 1 figur

    La física microanalítica

    Get PDF

    Entangled symmetric states of N qubits with all positive partial transpositions

    Full text link
    From both theoretical and experimental points of view symmetric states constitute an important class of multipartite states. Still, entanglement properties of these states, in particular those with positive partial transposition (PPT), lack a systematic study. Aiming at filling in this gap, we have recently affirmatively answered the open question of existence of four-qubit entangled symmetric states with positive partial transposition and thoroughly characterized entanglement properties of such states [J. Tura et al., Phys. Rev. A 85, 060302(R) (2012)] With the present contribution we continue on characterizing PPT entangled symmetric states. On the one hand, we present all the results of our previous work in a detailed way. On the other hand, we generalize them to systems consisting of arbitrary number of qubits. In particular, we provide criteria for separability of such states formulated in terms of their ranks. Interestingly, for most of the cases, the symmetric states are either separable or typically separable. Then, edge states in these systems are studied, showing in particular that to characterize generic PPT entangled states with four and five qubits, it is enough to study only those that assume few (respectively, two and three) specific configurations of ranks. Finally, we numerically search for extremal PPT entangled states in such systems consisting of up to 23 qubits. One can clearly notice regularity behind the ranks of such extremal states, and, in particular, for systems composed of odd number of qubits we find a single configuration of ranks for which there are extremal states.Comment: 16 pages, typos corrected, some other improvements, extension of arXiv:1203.371

    Presentació del Dr. Emilio Muñoz Ruiz

    Get PDF

    Introducció

    Get PDF
    corecore