8 research outputs found

    Temperature control of local magnetic anisotropy in multiferroic CoFe/BaTiO3

    Get PDF
    This paper reports on the temperature evolution of local elastic interactions between ferromagnetic CoFe films and ferroelectric BaTiO3 substrates. Polarization microscopy measurements indicate that growth-induced stripe domains in the CoFe films are preserved and strengthened during cooling and heating through the structural phase transitions of BaTiO3. Moreover, rotation of the magnetic easy axes at the tertragonal-to-orthorhombic transition (T = 278 K) and at T  ≈  380 K simultaneously switches the local magnetization of both uniaxial domains by 90° . Irreversible changes in the ferromagnetic domain pattern are induced when the room-temperature ferroelectric domain structure is altered after temperature cycling.Peer reviewe

    Field Tuning of Ferromagnetic Domain Walls on Elastically Coupled Ferroelectric Domain Boundaries

    Get PDF
    We report on the evolution of ferromagnetic domain walls during magnetization reversal in elastically coupled ferromagnetic-ferroelectric heterostructures. Using optical polarization microscopy and micromagnetic simulations, we demonstrate that the spin rotation and width of ferromagnetic domain walls can be accurately controlled by the strength of the applied magnetic field if the ferromagnetic walls are pinned onto 90 degrees ferroelectric domain boundaries. Moreover, reversible switching between magnetically charged and uncharged domain walls is initiated by magnetic field rotation. Switching between both wall types reverses the wall chirality and abruptly changes the width of the ferromagnetic domain walls by up to 1000%.Comment: 5 pages, 5 figure

    Alternating domains with uniaxial and biaxial magnetic anisotropy in epitaxial Fe films on BaTiO[sub 3]

    Get PDF
    We report on domain formation and magnetization reversal in epitaxial Fe films on ferroelectric BaTiO3 substrates with ferroelastica–c stripe domains. The Fe films exhibit biaxial magnetic anisotropy on top of c domains with out-of-plane polarization, whereas the in-plane lattice elongation of a domains induces uniaxial magnetoelasticanisotropy via inverse magnetostriction. The strong modulation of magnetic anisotropy symmetry results in full imprinting of the a–c domain pattern in the Fe films. Exchange and magnetostaticinteractions between neighboring magnetic stripes further influence magnetization reversal and pattern formation within the a and c domains.Peer reviewe

    Scenario development for the observation of alpha-driven instabilities in JET DT plasmas

    No full text
    In DT plasmas, toroidal Alfvén eigenmodes (TAEs) can be made unstable by the alpha particles resulting from fusion reactions, and may induce a significant redistribution of fast ions. Recent experiments have been conducted in JET deuterium plasmas in order to prepare scenarios aimed at observing alpha-driven TAEs in a future JET DT campaign. Discharges at low density, large core temperatures associated with the presence of internal transport barriers and characterised by good energetic ion confinement have been performed. ICRH has been used in the hydrogen minority heating regime to probe the TAE stability. The consequent presence of MeV ions has resulted in the observation of TAEs in many instances. The impact of several key parameters on TAE stability could therefore be studied experimentally. Modeling taking into account NBI and ICRH fast ions shows good agreement with the measured neutron rates, and has allowed predictions for DT plasmas to be performed
    corecore