10,162 research outputs found

    The prediction of transonic loading advancing helicopter rotors

    Get PDF
    Two different schemes are presented for including the effect of rotor wakes on the finite-difference prediction of rotor loads. The first formulation includes wake effects by means of a blade-surface inflow specification. This approach is sufficiently simple to permit coupling of a full-potential finite-difference rotor code to a comprehensive integral model for the rotor wake and blade motion. The coupling involves a transfer of appropriate loads and inflow data between the two computer codes. Results are compared with experimental data for two advancing rotor cases. The second rotor wake modeling scheme in this paper is a split potential formulation for computing unsteady blade-vortex interactions. Discrete vortex fields are introduced into a three-dimensional, conservative, full-potential rotor code. Computer predictions are compared with two experimental blade-vortex interaction cases

    An {\it ab initio} study of the magnetic and electronic properties of Fe, Co, and Ni nanowires on Cu(001) surface

    Full text link
    Magnetism at the nanoscale has been a very active research area in the past decades, because of its novel fundamental physics and exciting potential applications. We have recently performed an {\it ab intio} study of the structural, electronic and magnetic properties of all 3dd transition metal (TM) freestanding atomic chains and found that Fe and Ni nanowires have a giant magnetic anisotropy energy (MAE), indicating that these nanowires would have applications in high density magnetic data storages. In this paper, we perform density functional calculations for the Fe, Co and Ni linear atomic chains on Cu(001) surface within the generalized gradient approximation, in order to investigate how the substrates would affect the magnetic properties of the nanowires. We find that Fe, Co and Ni linear chains on Cu(001) surface still have a stable or metastable ferromagnetic state. When spin-orbit coupling (SOC) is included, the spin magnetic moments remain almost unchanged, due to the weakness of SOC in 3dd TM chains, whilst significant orbital magnetic moments appear and also are direction-dependent. Finally, we find that the MAE for Fe, and Co remains large, i.e., being not much affected by the presence of Cu substrate.Comment: 4 pages, 2 figure

    Magnetic moment and magnetic anisotropy of linear and zigzag 4{\it d} and 5{\it d} transition metal nanowires: First-principles calculations

    Full text link
    An extensive {\it ab initio} study of the physical properties of both linear and zigzag atomic chains of all 4dd and 5dd transition metals (TM) within the GGA by using the accurate PAW method, has been carried out. All the TM linear chains are found to be unstable against the corresponding zigzag structures. All the TM chains, except Nb, Ag and La, have a stable (or metastable) magnetic state in either the linear or zigzag or both structures. Magnetic states appear also in the sufficiently stretched Nb and La linear chains and in the largely compressed Y and La chains. The spin magnetic moments in the Mo, Tc, Ru, Rh, W, Re chains could be large (≥\geq1.0 μB\mu_B/atom). Structural transformation from the linear to zigzag chains could suppress the magnetism already in the linear chain, induce the magnetism in the zigzag structure, and also cause a change of the magnetic state (ferromagnetic to antiferroamgetic or vice verse). The calculations including the spin-orbit coupling reveal that the orbital moments in the Zr, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt chains could be rather large (≥\geq0.1 μB\mu_B/atom). Importantly, large magnetic anisotropy energy (≥\geq1.0 meV/atom) is found in most of the magnetic TM chains, suggesting that these nanowires could have fascinating applications in ultrahigh density magnetic memories and hard disks. In particular, giant magnetic anisotropy energy (≥\geq10.0 meV/atom) could appear in the Ru, Re, Rh, and Ir chains. Furthermore, the magnetic anisotropy energy in several elongated linear chains could be as large as 40.0 meV/atom. A spin-reorientation transition occurs in the Ru, Ir, Ta, Zr, La and Zr, Ru, La, Ta and Ir linear chains when they are elongated. Remarkably, all the 5dd as well as Tc and Pd chains show the colossal magnetic anisotropy (i.e., it is impossible to rotate magnetization into certain directions). Finally, the electronic band structure and density of states of the nanowires have also been calculated in order to understand the electronic origin of the large magnetic anisotropy and orbital magnetic moment as well as to estimate the conduction electron spin polarization.Comment: To appear in Phys. Rev.

    Experimental and analytical studies of a model helicopter rotor in hover

    Get PDF
    A benchmark test to aid the development of various rotor performance codes was conducted. Simultaneous blade pressure measurements and tip vortex surveys were made for a wide range of tip Mach numbers including the transonic flow regime. The measured tip vortex strength and geometry permit effective blade loading predictions when used as input to a prescribed wake lifting surface code. It is also shown that with proper inflow and boundary layer modeling, the supercritical flow regime can be accurately predicted

    Analysis of the Flow About Delta Wings with Leading Edge Separation at Supersonic Speeds

    Get PDF
    A research program was conducted to develop an improved theoretical flow model for the flow about sharp edge delta wings with leading-edge separation at supersonic speeds. The flow model incorporates a representation of the secondary separation region which occurs just inboard of the leading edge on such wings and is based on a slender-wing theory whereby the full three-dimensional problem is reduced to a quasi two-dimensional problem in the cross-flow plane. The secondary separation region was modeled by a surface distribution of singularities or a linearized type of cavity representation. The primary vortex and separation were modeled by a concentrated vortex and cut in the cross-flow potential which represents its feeding sheet. The cross-flow solutions for the cavity model were obtained, but these solutions have physical significance only in a very restricted range of angle of attack. The reasons for the failure of the flow model are discussed. The analysis is presented so that other interested researchers may critically review the work

    The deformed Hermitian-Yang-Mills equation in geometry and physics

    Full text link
    We provide an introduction to the mathematics and physics of the deformed Hermitian-Yang-Mills equation, a fully nonlinear geometric PDE on Kahler manifolds which plays an important role in mirror symmetry. We discuss the physical origin of the equation, and some recent progress towards its solution. In dimension 3 we prove a new Chern number inequality and discuss the relationship with algebraic stability conditions.Comment: 20 page
    • …
    corecore