2,809 research outputs found

    Hidden Markov Model Identifiability via Tensors

    Full text link
    The prevalence of hidden Markov models (HMMs) in various applications of statistical signal processing and communications is a testament to the power and flexibility of the model. In this paper, we link the identifiability problem with tensor decomposition, in particular, the Canonical Polyadic decomposition. Using recent results in deriving uniqueness conditions for tensor decomposition, we are able to provide a necessary and sufficient condition for the identification of the parameters of discrete time finite alphabet HMMs. This result resolves a long standing open problem regarding the derivation of a necessary and sufficient condition for uniquely identifying an HMM. We then further extend recent preliminary work on the identification of HMMs with multiple observers by deriving necessary and sufficient conditions for identifiability in this setting.Comment: Accepted to ISIT 2013. 5 pages, no figure

    Integrative Systems Biology: Elucidating Complex Traits

    Get PDF

    KCNK5 is Functionally Down-Regulated Upon Long-Term Hypotonicity in Ehrlich Ascites Tumor Cells

    Get PDF
    Background/Aims: Regulatory volume decrease (RVD) in response to acute cell swelling is well described and KCNK5 (also known as TASK-2 or K2P5.1) has been shown to be the volume sensitive K+ channel in Ehrlich cells. Very little is, on the other hand, known about the effects of long-term hypotonicity on expression and function of KCNK5, thus we have investigated the effect of long-term hypotonicity (24h - 48h) on KCNK5 in Ehrlich cells on the mRNA, protein and physiological levels. Methods: Physiological effects of long-term hypotonicity were measured using patch-clamp and Coulter counter techniques. Expression patterns of KCNK5 on mRNA and protein levels were established using real-time qPCR and western blotting respectively. Results: The maximum swelling-activated current through KCNK5 was significantly decreased upon 48h of hypotonicity and likewise the RVD response was significantly impaired after both 24 and 48h of hypotonic stimulation. No significant differences in the KCNK5 mRNA expression patterns between control and stimulated cells were observed, but a significant decrease in the KCNK5 protein level 48h after stimulation was found. Conclusion: The data suggest that the strong physiological impairment of KCNK5 in Ehrlich cells after long-term hypotonic stimulation is predominantly due to down-regulation of the KCNK5 protein synthesis

    Combination GLP-1 and Insulin Treatment Fails to Alter Myocardial Fuel Selection Versus Insulin Alone in Type 2 Diabetes

    Get PDF
    Context Glucagon-like peptide-1 (GLP-1) and the clinically available GLP-1 agonists have been shown to exert effects on the heart. It is unclear whether these effects occur at clinically used doses in vivo in humans, possibly contributing to CVD risk reduction. Objective To determine whether liraglutide at clinical dosing augments myocardial glucose uptake alone or in combination with insulin compared to insulin alone in metformin-treated Type 2 diabetes mellitus. Design Comparison of myocardial fuel utilization after 3 months of treatment with insulin detemir, liraglutide, or combination detemir+liraglutide. Setting Academic hospital Participants Type 2 diabetes treated with metformin plus oral agents or basal insulin. Interventions Insulin detemir, liraglutide, or combination added to background metformin Main Outcome Measures Myocardial blood flow, fuel selection and rates of fuel utilization evaluated using positron emission tomography, powered to demonstrate large effects. Results We observed greater myocardial blood flow in the insulin-treated groups (median[25th, 75th percentile]: detemir 0.64[0.50, 0.69], liraglutide 0.52[0.46, 0.58] and detemir+liraglutide 0.75[0.55, 0.77] mL/g/min, p=0.035 comparing 3 groups and p=0.01 comparing detemir groups to liraglutide alone). There were no evident differences between groups in myocardial glucose uptake (detemir 0.040[0.013, 0.049], liraglutide 0.055[0.019, 0.105], detemir+liraglutide 0.037[0.009, 0.046] µmol/g/min, p=0.68 comparing 3 groups). Similarly there were no treatment group differences in measures of myocardial fatty acid uptake or handling, and no differences in total oxidation rate. Conclusions These observations argue against large effects of GLP-1 agonists on myocardial fuel metabolism as mediators of beneficial treatment effects on myocardial function and ischemia protection

    Proteome Analysis of Pyloric Ceca: A Methodology for Fish Feed Development?

    Get PDF
    Changing the protein source of fish feed from fish meal to alternative sources of protein will affect traits such as fish growth, quality, and feed utilization. The present investigation was initiated to introduce a two-dimensional gel electrophoresis based proteomic workflow as a tool to investigate feed effects on fish by analyzing protein changes in the fish gut. The workflow was used to study the effect of substituting fish meal in fish feed by alternative sources of protein. Rainbow trout divided into five groups were fed for 72 days with feeds varying in protein composition. By two-dimensional gel electrophoresis proteins extracted from the pyloric ceca were separated, making it possible to measure the abundance of more than 440 protein spots. The expression of 41 protein spots was found to change due to differences in feed composition. By mass spectrometry 31 of these proteins were identified, including proteins involved in digestion (trypsinogen, carboxylic ester hydrolase, and aminopeptidase). The many expression changes indicated that the trout, when adapting to differences in feed formulation, alter the protein composition of the gut
    corecore