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More is different.
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Preface

e questions that motivated this esis originates from my interest in exploring the
unknown. Standing on the shoulders of previous hard working scientists, be it labor-
ants orNobel laureates, we now have the unprecedented chance to understand (patho)-
biology, by assembling well-studied pieces of knowledge into descriptions of biological
systems.

e work presented in this PhD esis has been carried out between April  
andMarch   at the Center for Biological SequenceAnalysis at the Technical Uni-
versity of Denmark with Søren Brunak as my supervisor. Besides Søren, orkild I. A.
Sørensen from the Institute of Preventive Medicine, Copenhagen University Hospitals,
has been my co-supervisor.

I wish to express special thanks to orkild for hiring me as a student-researcher
during my Master's studies at the University of Copenhagen in , and for always
motivatingme to systematically explore the unknown. orkild has steeredme through
several projects and always encouraged me to write up work− also in case of negative
results ("Husk at klare 'nul-resultater' oe - og især hvis hypotesen er velbegrundet - er
mere værdifulde end vage positive fund. De klare nuller gør arbejdet færdigt s̊a ingen
dereer behøver bruge mere krudt p̊a dem").

I am very thankful to Søren and Kasper Lage for paving the way in a research field,
which not until recently has started moving from reductionist-dominated biology to-
wards systems biology. Søren has never said no to a chat, nor a short pitch of a new
idea. He has supported me in everything I have done, and I have learned a lot from his
pragmatic way of being. Kasper has been a key friend and strongly inspiring researcher
during my time as a PhD student, and my research stays in Boston.

My thanks go toTrey Ideker, Rohith Srivas andGregoryHannum at theUniversity of
California, San Diego. Trey welcomed me whole-heartedly, and my -month research
stay in his group was extremely inspiring and joyful.

I would like to thank Majken K. Jensen for almost daily exchanges on thoughts
about genome-wide association data analysis techniques, and a lot of other things;
Niclas TueHansen for conceiving the original idea for theMetaRankermethod (presen-
ted in this esis) and his immense amount of work on that paper;Daniel Edsgärd and
Nils Weinhold for daily chats on data integration methodologies; Piotr Dworzynski for
helping me to implement MetaRanker as an efficient web-tool; Peter Wad Sackett, John
Damm Sørensen, Kristoffer Rapacki, and Hans Henrik Stærfeldt for never hesitating to
help me with technical assistance; Olga Rigina for help on InWeb-related issues; all
Integrative Systems Biology group members for fruitful discussions; Søren Mørk, Agata
Wesolowska, and Rachita Yadav for commenting on the esis; and Anders Krogh for
a great time at the Bioinformatics Centre of the University of Copenhagen during my
Master's studies. In addition I would like to thank Annette V. Uldall, Lone Boesen,
Dorthe Kjærsgaard, Marlene Beck, Louise Juul Hansen for always helping me trough
practicalities, never being impatient, and always smiling; and all others at CBS for a
really great working atmosphere.

Benedicte and I have developed a perfect balance between science and other aspects
in life. I am deeply thankful to her for her beautiful way of being.

e Institute of Preventive Medicine contributed with one third of the funding.
Mail fra ..
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Summary

Risk-phenotypes and diseases are oen caused by perturbed cellular networks, as bio-
logical processes depend on an overwhelming number of heavily intertwined com-
ponents. e impact of a genetically altered gene may ripple through its molecular
neighborhood instead of being confined to the gene product itself. My doctoral stud-
ies have been focused on the development of integrative approaches to identify systemic
risk-modifying and disease-causing patterns. ey have been rooted in the hypothesis
that data integration of complementary data setsmay yield additional etiologic insights
compared to analyses conducted within a single type of data.

e first line of research presented here outlines two integrative methodologies de-
signed to identify etiological pathways and susceptibility genes. In Paper I, my co-
workers and I present an integrative approach that interrogates protein complexes for
enrichment in incident coronary heart disease (CHD) associations from genome-wide
association (GWA) data. We show that integration of amoderately powered GWAdata
with protein-protein interaction (PPI) data successfully identifies candidate susceptib-
ility genes for incident CHD. In Paper II, we present an integrative method that com-
bines heterogeneous data from GWA studies, PPI screens, disease similarities, linkage
studies, and gene expression experiments into amulti-layered evidence network, which
can be used to prioritize the protein-coding part of the genome according to a partic-
ular indication. We applied the method to bipolar disorder and type  diabetes, and
validated it by replicating a single-nucleotide polymorphism (SNP) within a novel bi-
polar disorder susceptibility gene.

Next, I present the avenue of my research that has been focused on the analysis of
genetic variation in obesity. In section ., I outline results from our bioinformatics-
based analysis of the FTO locus. Genetic variation within the FTO locus provides
the hitherto strongest association between common SNPs and obesity, but the mech-
anisms leading to this association are still unknown. In Paper III, we demonstrate
that body-mass index associated gene products coalesce onto distinct protein com-
plexes, and show that these putative risk modules incriminate novel candidate obesity-
susceptibility genes.

e last overall line of research presented here, provides examples on how net-
works of human metabolism may serve as a data integration framework for differential
gene expression data. In Paper IV, we present a method that can be used to identify
metabolically-related sets of enzymes, which exhibit modest but concordant changes
in gene expression. In Paper V, we used that approach to identify metabolites as bio-
markers for weight maintenance upon dietary-induced weight loss.

e approaches presented in this PhDesis provide integrativemethodologies for
the aggregation of multiple, functionally relevant data types. Together they represent
a novel bioinformatics-based toolbox for analyses of genetic variation in human traits
and disease.

e esis is structured as follows. Chapter  presents a few introductory remarks
to integrative systems biology, and Chapter  gives a brief description of human genetic
variation and GWA analysis. Chapters - present the main topics in the esis (in-
tegrative methodologies for the analysis of GWA data, integrative analyses of genetic
variation in obesity, and integrative analyses based on metabolic networks). Chapter 
summarizes the esis with a few concluding remarks.
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Dansk resumé

Komplekse sygdomme og lidelser er i mange tilfælde for̊arsaget af dysfunktion i de un-
derliggende netværk af cellulære komponenter. Da kroppens celler best̊ar af et stort
antal indbyrdes forbundne biologiske processer, vil effekterne af fejl i kodningen af et
givent gen sjældent begrænses til de proteiner, genet koder for, men derimod spredes
til de andre cellulære komponenter, som disse proteiner interagerer med. Mit PhD-
studie har været fokuseret p̊a at udvikle dataintegrationsbaserede metoder, der kan
identificere s̊adanne fejl-regulerede cellulære netværk. Min hypotese har været, at in-
tegration af komplementære datatyper øger muligheden for at identificere de kausale
netværk af faktorer, som fører til sygdom.

I min aandling vil jeg starte med at præsentere to overordnede dataintegrations-
baserede metoder, der ved hjælp af data fra genetiske associationsstudier og andre
relevante datatyper kan identificere kausale gener i komplekse sygdomme. I Paper I
præsenterer vi en metode, som kan opspore proteinkomplekser, hvis underliggende
genvarianter associerer med hjertekarsygdom. Vi har identificeret et specifikt pro-
teinkompleks, hvis underliggende gener associerer med individers risiko for at ud-
vikle hjertesygdommen. I Paper II præsenterer vi en metode, der integrerer data fra
en bred vie af sygdoms-specifikke datatyper, s̊asom genetiske ensartetheder mellem
sygdomme, genetiske associationsstudier og genekspressionsstudier. Vi benytter met-
oden til at lave analyser af genetisk variation i type  diabetes og maniodepressivitet.
Vi finder, at specifikke genvarianter af YWHAH-genet medfører en øgning i risikoen
for at udvikle sidstnævnte lidelse.

Dernæst præsenterer jeg resultater af den del af mit PhD-forløb, som har været
fokuseret p̊a analysen af genetisk variation i fedme. I afsnit . skitserer jeg resultater
af vores bioinformatiske analyse af FTO genet. Analysen har været motiveret af, at
denne region udgør den hidtil mest signifikante association med fedme − dog er de
specifikke mekanismer, som øger genvariantanlægsbærernes risiko for fedme, stadig
ukendte. I Paper III viser vi, at proteiner fra kendte fedmegener er beriget i specifikke
proteinkomplekser og tydeliggør, at kendskabet til disse proteinkomplekser er nyttigt i
forhold til at finde nye genvarianter, der øger risikoen for at udvikle fedme.

Det sidste overordnede forskningsomr̊ade jeg præsenterer resultater af, beskæiger
sig med, hvordan man kan benytte rekonstruerede netværk af det menneskelige stof-
skie som platform til bedre at kunne forst̊a komplekse fænotyper og sygdom. I Paper
IV præsenterer vi en metode, som kan benyttes til at identificere grupper af enzymer,
som udviser moderate, men samstemmende ændringer i genekspression. I Paper V
benytter vi dennemetode til at identificeremetabolitter, der fungerer som biomarkører
for vægtvedligeholdelse eer et vægttabsinterventionsstudie.

Metoderne, som jeg præsenterer i denne aandling, illustrerer, hvordan genetiske
datasæt med succes kan integreres med anden sygdomsspecifik evidens. Fremgangs-
m̊adernes fleksible karakter gør dem til nyttige redskaber i fremtidens analyser af kom-
plekse fænotyper og sygdomme.

Aandlingen introduceres med indledende kommentarer om systembiologi og
dataintegration (afsnit ). I afsnit  gives en kort introduktion til genetisk variation
og genetiske associationsstudier. Hernæst gennemg̊ar afsnit - hovedemnerne i mit
PhD-studie (dataintegrationsbaserede analyser af genetisk data, integrationsbaserede
analyser af genetisk variation i fedme og integrationsbaserede analyser baseret p̊a net-
værk af stofskiet). Afsnit  afrunder aandlingen ved en kort perspektivering samt
konklusion.
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1Introductory remarks

roughout human history, maps have been used to help charter unfamiliar territory
by representing vast amounts of information in a manageable format. e surface of
our planet was extensively mapped during the th century, the human genome was
sequenced and mapped through the last decade, and now scientists are systematic-
ally mapping variation that shapes traits and cause disease. Genome-wide association
(GWA) analysis is one of the first unbiased approaches that followed the completion
of the human genome sequence and led to new insights into common diseases. When
I started my PhD studies in April , the FTO gene locus was the only body-mass
index associated locus reported by GWA analysis. Now, three years later, the number
of body-mass index associated loci has grown to .

Rapid advancements in sequencing technologies were driving the completion of
the human genome sequence. Importantly this development was paralleled by the
advancement of technologies allowing large-scale quantification of molecular com-
ponents such as messenger RNA, proteins, and metabolites (referred to as -omics ap-
proaches). Collectively these new technological frontiers in biology spurred a research
paradigm commonly referred to as systems biology. In this new paradigm the term
system is broadly and loosely defined as a set of components and their mutual relation-
ships.

Despite the fact that most biological systems are still incompletely understood, de-
lineation of higher level cellular organization such as protein-protein, DNA-protein,
and lipid-protein interactions constantly provide more and more refined reconstruc-
tions of cellular networks - another major achievement of the recent years of research.

Biological data generation at hospitals and research institutions increases rapidly.
Clinical and cohort-based system-wide data (e.g. GWA data) may be overlaid with cel-
lular networks, as for instance protein-protein interaction (PPI) data, to build multi-
dimensional disease models. Genome-wide (and other systems-wide) data sets are
per definition unbiased towards known susceptibility loci and hence provide excellent
starting points for generation of novel risk-phenotype specific hypotheses about etiolo-
gical genes and pathways. Towards that end, systematic data integration is a necessity,
and modeling of systems of inter-connected cellular components oen is of advantage.

As we are increasing the detail of the evolving networks of molecular pathobiology,
a new map is being drawn offering a first glimpse into our molecular past and clinical
future.







2Human genetic variation
and genome-wide
association studies

Family history is a strong indicator of human disease. Consequently inherited genetic
variation is believed to play a major role in the development of human diseases and
phenotypic traits in general. Decades of intense investigations including recent large-
collaborative efforts such as the International HapMap Project, the large community
gathering around GWA analyses, and the  Genomes Project, have provided a first
comprehensive view into the genetic foundation of common traits and diseases, al-
though large parts of the genetic architecture still remains incompletely understood.
Below, I describe systematic approaches that have been applied to elucidate genetic
variation, and identify common susceptibility sites in the human genome.

. Human genetic variation

In  the HapMap Project paved the way for GWA study analysis by publishing
a database containing . million human genome single nucleotide polymorphisms
(SNPs) [International HapMap Consortium, ]. e consortium categorized most
single-base pair inherited variants that are prevalent at a minor allele frequency greater
than five percent.

e HapMap Project was based on the observation that linkage disequilibrium
between adjacent bases in the genome allows one to select SNPs that tag larger haplo-
type blocks in the human genome. Linkage disequilibrium describes the non-random
association of two alleles and structures genomes into haplotype blocks consisting of
a number of correlated alleles within each region. rough generations, haplotype
blocks are only slowly changed by de novo mutations and recombination events. In
 the HapMap Consortium published the most recent version of the database (ver-
sion ), which holds more than . million common tag SNPs [Altshuler et al., ]
surveyed across  populations and , individuals.

e extent of variation uncovered in the first phase of the HapMap Project was
larger than first expected [Hardy and Singleton, ]. It appeared that on average a
polymorphic site with a minor allele frequency > exists every , base pairs (bps)
in the human genome (in total  million SNPs) [International HapMap Consortium,
]. In , when the HapMap Project was initiated the price for sequencing a
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million bases in an individual was >$, but since than prices have dropped sharply,
and currently mapping of one million bases of DNA sequence costs <$. (Fig. .).

Figure .: Overview of the cost per megabase ( million bases) of DNA sequence.
e cost per megabase DNA sequence has fallen rapidly since mid . Note that the
y-axis is on a logarithmic scale. Data source: e National Human Genome Research
Institute, USA, http://www.genome.gov/sequencingcosts

e HapMap Project was partly driven by the common disease− common variant
(CDCV) hypothesis [Reich and Lander, ], which states that common diseases are
caused by a few common SNPs (> minor allele frequency) with relatively large effect
sizes. e CDCV hypothesis became the foundation for GWA analysis, as it suggests
that it is sufficient to investigate common SNPs to understand the genetic architec-
ture of complex traits. e CDCV hypothesis is now increasingly being challenged, as
common SNPs seem to capture a relative small part of the genetic variation in traits
and diseases. However, in  it was rapidly adopted as heritability of complex traits
in this way could be analyzed by a near-complete set of common SNPs that could fit
onto a single genotyping microarray.

. Genome-wide association analysis

During the last years, linkage studies and candidate gene approaches have been suc-
ceeded by GWA studies as the main approach to identify DNA variation that associ-
ates with common traits. e first GWA study was published on age-related macular
degeneration in  [Klein et al., ]. In  the Wellcome Trust Case Control
Consortium published a landmark paper presenting GWA studies on  case control
studies of common diseases [Wellcome Trust Case Control Consortium, ], among
others type  diabetes and bipolar disorder − data sets that we used in the integrative
analyses carried out during my doctoral studies. e Wellcome Trust Case Control

Currently, a complete human genome can be sequenced for <$,.
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Consortium's study marked merely the beginning; by March   GWA studies
have reported a total of , associations.

Data cleaning and population substructure adjustments

e methodology of GWA studies follows established protocols. Aer DNA has been
extracted and hybridized to microarrays, SNPs are called using the manufacturers' or
the open source community's soware tools. Once alleles have been assigned to gen-
otyped SNPs across all individuals, a range of quality control measures are used to ex-
clude specific individuals, and to remove low-confidence SNPs. Individuals may either
be excluded due to more similar than expected genetic backgrounds (in case they are
siblings), due to ethnical divergence (as can be identified by principal component ana-
lysis on the genotypes), or due to a large amount of SNPs that could not be called by
the genotyping soware. SNPsmay be excluded across all individuals in case they have
call-rates below a given cut-off (typically ), have minor allele frequencies below a
given cut-off (typically -), or are in Hardy-Weinberg disequilibria. e minor al-
lele frequency and Hardy-Weinberg equilibrium calculations are assessed in controls
only, since they, in case of association, per definition will differ between cases and con-
trols.

At least a slight degree of population substructure is expected in most cohorts. In
association analysis, population substructure may lead to spurious inflation of SNPs; if
some individuals originate from a genetically slightly different region and by coincid-
ence are categorized as cases, then SNPs, which frequencies differed due to ancestry,
will falsely associate with case-control status and generate false-positive associations
(type  errors). Population substructure can be accounted for by including the first
three to ten vectors from a principal component analysis done on the individuals' gen-
otype vectors as covariates in the statistical associationsmodel. eNUGENOBStudy
on dietary induced weight loss − an ongoing project of mine − provides an illustrat-
ive example on population substructure as individuals were recruited from  centers
across Europe (Fig. .).

Association analysis

In GWA analysis each SNP is tested for potential association with the given phenotype.
In that respect the phenotype is either coded as a dichotomous variable (e.g. lean versus
obese individuals), or as a continuous variable (e.g. the kilos of weight lost in a diet
intervention study). Several different study designs do exist, but will not be reviewed
in this esis. Most oen covariates such as age, gender, and ancestry are included to
adjust for non-trait related phenotypic heterogeneity in the cohort. e genotype may

Data for this calculation came from theNational HumanGenome Research Institute GWAStudy Cata-
log [Hindorff et al., ]. e reported numbers include SNPs that were reported in several publications,
and SNPs that are in linkage disequilibrium. erefore the unique number of independently associated loci
will be smaller.

e Hardy-Weinberg principle states that both allele and genotype frequencies remain constant in the
absence of selection, dri, gene flow, mutation, non-random mating, and with an infinite population size.

Note that the phenotype-causing genetic variation is expected to be subtle compared to the variation
caused by different genetic backgrounds, and therefore is not expected to reside in some of the first principal
components [Price et al., ].

A finding which replicates a previous report on population substructure across Europe [Novembre
et al., ,Lao et al., ].
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Figure .: Population substructure in the NUGENOB cohort [Sørensen et al., ].
e first two principal components of a principal component analysis were plotted
against each other. By correlating the longitude and latitude of the European centers
we found that latitude explained  and longitude explained  of the variation in
the first principal component. Including both latitude and longitude explained  of
the variation in the first principal component.

be coded as an additive, recessive, dominant model, or by use of a indicator variable
whereby no specific genetic model is assumed.

Multiple testing correction and replication

As the same null-hypothesis is tested for each SNP in a GWA study (SNP x is not as-
sociated with the trait), multiple testing correction needs to be applied to adjust for
spurious correlations that are expected to be incurred due to the large number of re-
petitive tests. erefore, multiple testing procedures such as Bonferroni correction are
used to calculate a threshold for when to deem a given SNP as significant. However,
Bonferroni correction is an overly conservative framework since SNPs are correlated,
and the effective number of SNPs and statistical tests employed therefore is smaller
than the observed number of SNPs. During my doctoral studies, I have implemented a
method that calculates the number of effective tests, which is presented in section ..

To increase the fraction of genuine associations identified, GWA studies oen in-
volve a discovery and replication phase. In the initial discovery phase, GWA analysis is

For more information on statistical considerations on GWA analysis please refer to [Wang et al., ].
For instance only SNPs with a p-value less than . / 8 = x−8 are called significant when 

million SNPs are tested on a Affymetrix . microarray with  million SNPs.
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used to identify associations. In the replication phase promising top SNPs from the dis-
covery analysis are genotyped in independent cohorts. Finally, SNPs aremeta-analyzed
across the discovery- and replication cohorts, and any SNPs with p-values below the
Bonferroni threshold are trusted as bona ĕde associations.

Statistical power considerations

ere is an import trade-off between decreasing the cost of a given study (minimizing
the study cohort size) and increasing the statistical power to detect causal variants.
Among the factors that demand an increase in the cohort size are:

- Chance-correlations

- Genotyping errors

- Phenotype misclassification

- Low effect sizes

- Low risk-allele frequencies

- Low linkage disequilibrium between the tag SNP and the true causal variant

- Genetic heterogeneity caused bynon-additive interactions between genes or gene-
environment interactions.

Ideally the researcher estimates the different factors prior to the GWA study to de-
termine the optimal cohort size. However, it will not always be possible since large-
scale recruitment may prove easier for some traits and more difficult for others. For
instance body-mass index and height aremore feasible tomeasure than weight loss in a
clinical intervention study or coronary heart disease incidences in prospective studies.

Imputation

In imputation haplotypic information from for instance the HapMap database is used
to infer alleles of non-genotyped SNPs residing on the same haplotype block as gen-
otyped SNPs. Imputation increases power and, importantly, enables meta-analysis
across different experimental platforms and versions of the same microarray.

Single nucleotide polymorphisms impact on biology

For most associations found in GWA studies, the associated SNPs are not the causative
variants [Robinson, ]. Instead, they act as signposts for the real variants, by con-
stituting surrogate markers tagging the real functional polymorphisms. Consequently,
re-sequencing (also referred to as fine-mapping) and functional studies, are needed to
find the causal variants. Several explanations on how alleviating or aggravating variants
may impact downstream biology are imaginable: deregulation of the nearest gene's (or
more distal gene's) gene-product; alteration of protein function caused by changes in

Please refer to [Ioannidis et al., ] for a review.
Imputationwill not be described further in thisesis. Formore information please refer to [de Bakker

et al., ].
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protein structure due to altered amino acid sequences (missense or nonsense muta-
tions); or other functional complications such as small in-frame insertions or dele-
tions, or small frameshi insertions or deletions. While amino acid changing effects
are supposed to bemore severe, regulatory perturbations are suggested to be less severe
but more widespread [Kasowski et al., ]. In a recent study,  of the previously
identified trait-associated variants were reported to be within intronic regions, and to
be significantly underrepresented in intergenic regions [Hindorff et al., ]. In addi-
tion, trait-associated SNPs were found to be overrepresented in non-synonymous vari-
ants and  kilo bases (kb) promoter regions. However, merely  of trait-associated
SNPs indentified by GWA studies are in strong linkage disequilibrium with protein-
coding regions [Manolio, ]. e latter has been proposed as one of the reasons
why only minor fractions of the heritability of complex traits is accounted for by GWA
analyses. However, several other explanations for this 'missing heritability' have been
proposed and are discussed in the next section.

. Pros and cons of genome-wide association studies

emedian per allele odds ratio associated SNPs found by GWA analysis is . [Man-
olio, ], a finding emphasizing that GWA studies mostly have identified common
low-risk alleles. Additionally, for most complex traits, common SNP associations ac-
count for at most  of the genetic variation [Frazer et al., ] (exceptions are age-
related macular degeneration, Crohn's disease, and several endophenotypes such as
lipid levels andmetabolite concentrations [Manolio et al., ,Teslovich et al., ,Il-
lig et al., ]). is fraction might increase as causal SNPs still need to be identified
for most of the established associations, and current effect size estimates hence may be
underestimated [Ku et al., ]. Concerns about the absence of high-risk alleles and
the low amount of genetic variability accounted for has been expressed as a criticism
to GWA studies and its key CDCV hypothesis. e CDCV hypothesis is challenged
by the multiple rare variant hypothesis, which states that a given disease is caused by
numerous variants that need not to be the same among individuals with the particular
disease. Rare variants have not been analysed in GWA studies, as current genotyping
microarrays have been densely filled with common SNPs, and since there generally is
low statistical power to identify rare SNPs by association analysis. Rare variants and the
multiple rare variant hypothesis are the currently most widely accepted single explan-
ation for the relatively low explanatory power of GWA findings [Cirulli and Goldstein,
]. However, there are other possible reasons, the most pronounced being:

Epistasis between genetic variants, i.e. non-additive interactions between to alleles,
are known to confer large effects on phenotypes [Cordell, ]. However, due to
the large number of possible SNP-SNP combinations they are difficult to identify.

Parent-of-origin effects may influence risk for disease. A recent study found that al-
lelic relative risk differed based on whether the risk allele was inherited from the
paternal or maternal line [Kong et al., ].

Copy number variants have been shown to play significant roles in mental disorders
such as schizophrenia [Stefansson et al., ,McCarthy et al., ]. However,
a recent study by the Wellcome Trust Case Control Consortium showed that
common copy number alterations most likely will not contribute significantly

Coined by Maher in [Maher, ].
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to the majority of complex traits (of the copy number variants that associated
strongly with disease, p-value < −8, only  had odds ratios above  and
 had odds ratios above ) [Wellcome Trust Case Control Consortium et al.,
].

Gene-environment interactions are not systematically accounted for in current GWA
studies [omas, ]. A related issue is the hitherto almost entirely unknown
interaction between genetic diversity in our gut bacteria and human genetic vari-
ation, and its impact on metabolism [Qin et al., ].

Epigenetics, viz. the passing on of transgenerational effects that are not manifested
through variation in the DNA sequence, but rather in the way how the DNA
is condensed, is another mechanism that is likely to impact heritability of traits
[Petronis, ].

Future research will show whether any of the above avenues will add significantly
to the inherited risk for complex diseases. Currently, they are used as alternative ex-
planations, and in some cases, arguments against analyses of common variation. In
the GWA research field, the major hope was that findings could be used for genetic
counseling. However, the relatively low effect sizes of causal variants have moved that
goal into a unforeseeable future. Let me illustrate that by a small anecdote. It turns
out that I am a heterozygous carrier of the FTO rs risk variant C (passed to
me through my maternal line), which by Dina et al was found to be associated with a
significantly elevated risk of being obese [Dina et al., ]. In their work, they report
a per allele odds ratio of . ( confidence interval: .-.), which is relatively
high for a common variant association. In my case, a per allele odds ratio of . can
be translated into a  higher risk of being obese compared to the cohort without the
variant. Obviously, this value is too small to be useful for genetic counseling and more
genetic and lifestyle information is needed to predict my risk of becoming obese.

However, it is important to keep in mind that relatively small effect sizes do not
preclude biological insight as exemplified by a recent GWA analysis for body-mass
index in which SNPs with per allele effect sizes for the rs SNP as low as .
body-mass index points (kg/m2) were identified through GWA meta-analysis [Speli-
otes et al., ]. One of the major insights drawn from GWA analyses is that com-
mon variation significantly contributes to complex traits (albeit with low effect sizes in
some cases). Despite that the fraction of the overall trait-variability remains relatively
low, much has been learned as to which genes and pathways are implicated in shaping
particular traits and diseases. One such example is body-mass index and the central
hypothalamus pathways as outlined in section . on page . ere are odd examples,
too, one of them being that the KITLG gene associates with testicular carcinoma on the
one hand [Rapley et al., ], and hair color on the other [Sulem et al., ], or find-
ings showing that the ORMDL gene associates with both childhood asthma [Moffatt
et al., ] and Crohn's disease [Barrett et al., ].

Another biological insight from GWA studies is that the majority of associated
SNPs affect adjacent genes instead of having trans-effects of more distal genes [Heid

e minor allele frequency of the rs SNP is  in the European population.
I have inherited two copies of the risk allele (G) of that locus. Given that 'worst-case scenario' these

findings imply that  *  =  grams of my kg body weight theoretically results from that variant.
Even though the causal relationship as to which gene is affected by a particular SNP remains unclear

in almost all cases, and even though the mechanisms by which SNPs perturb gene expression and or protein
function still have to be found.
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et al., ]. Another unexpected and challenging finding is that gene-poor areas are
harboring associations to traits [Manolio et al., ], one such example being the to-
date strongest association formyocardial infarction heart disease and SNPs in the p
region with kb to the nearest protein-coding genes [Mcpherson et al., ] or a
SNP on q that associates with colorectal and prostate cancer but is > kb away
from the closest gene (MYC) [Pomerantz et al., ].

In summary, GWA studies have proven useful in systematically identifying com-
mon low-risk variants, which for most traits account for at most  of the genetic
variation. At the same time GWA studies have provided novel insight as to which
pathways are underlying a number of complex traits. Apart from DNA sequencing,
which is briefly discussed in the following section, integrative systems biology analyses
of multiple trait-specific evidence sources may augment genetic analyses as discussed
in the remainder of the esis.

. Probing rare genetic variation

In , the  Genomes Project published a detailed catalog detailing more than
 of all SNPs with > minor allele frequency in the non-coding part of the human
genome, and SNPs with minor allele frequencies down to >. minor allele frequen-
cies in coding regions [ Genomes Project Consortium et al., ]. By sequencing
 human genomes selected from each of the five major population groups (Europe,
Americas, East Asia, West Asia and West Africa), the consortium reported  million
previously unknown SNPs. e  Genomes Database on genetic variation is now
being used to impute existing GWA studies, to facilitate the simultaneous analysis of
common and rare variants (> . minor allele frequency). However, re-sequencing
is still needed to identify variants with minor allele frequencies below the ones cata-
loged by the  Genomes Project. Sequencing of the diploid genome of Craig Venter
showed that theremight be around .million SNPswithin a single genome [Levy et al.,
] and recent exome sequencing studies have shown that ,, or ., of these
may reside within coding sequences [Ng et al., ]. e increased number of rare
SNPs to be analyzed will require novel analysis techniques that alleviate the multiple
testing problem, for instance by use of bioinformatics approaches as discussed in the
concluding remarks (Chapter ). To summarize, the question whether rare variants
contribute significantly to common diseases presents literately an open chapter.





3Approaches for integrative
analyses of genome-wide
association data

Decades of research in molecular biology have exposed layer upon layer of molecular
complexity. Complex networks glue these layers together, and sub-networks within
these shape traits, and, in some cases, disease. Systems biology approaches are be-
ing developed to identify these non-obvious systemic patterns. In the following, I will
discuss () the motivation for integrative systems biology approaches, () general in-
tegrative methodologies for the analysis of GWA data, () issues concerning scoring of
genes based on GWA data, and () definition and delineation of biological pathways.

. Motivation for integrative systems biology approaches

Systems-based approaches are needed to capture themolecular dynamics driving the com-
plex development of traits and deregulation of disease at the pathway-level. Cellular com-
ponents such as genes, RNAs, proteins and metabolites are connected through inter-
twined pathways forming complex networks. Genetic alteration most oen will not
be restricted to the directly affected gene product, but may ripple through the gene
product's physical neighborhood [Barabási et al., ]. As a result the origin and
development of traits are believed to arise from networks of genes, proteins and/or
metabolites, which may be hard to identify through non-systemic approaches.

Systems-based approaches may yield more robust results. Within a given phenotype-
causing pathway, the pathogenic components might differ between individuals or co-
horts [Cantor et al., ]. When different components of the same etiological path-
way are perturbed between individuals or between cohorts, significance testing at the
pathway-level may yield more sensitive and robust results.

Systems-based approaches are more sensitive to modest but coordinated associations
with the trait. Biologically significant genes do not necessarily harbor SNPs with large
effect sizes. Consequently, GWA studies have identified far from all susceptibility loci,
especially for traits for which large-collaborative meta-analyses have been difficult to
accomplish. Based on molecular network reconstructions, systems-based approaches
can help to detect central etiological pathways that exhibit enrichment in SNPs with

Please refer to Chuan et al for an example [Chuang et al., ].
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modest, but consistently larger than under the null hypothesis expected effect sizes
[Wang et al., ].

Systems-based approaches preserve the desired unbiased nature of large-scale data
sets. Most oen integrative system biology approaches are data-driven with no a priori
assumptions as to which components are involved in pathogenesis.

Integration-based approaches are more likely to capture pathobiological processes.
Complex traits may be caused by several pathobiological processes across distinct bio-
logical domains, which are not captured by a single type of technology. Data integra-
tion across complementary disease-specific evidence sources increases the chance of
identifying patterns that predispose to disease.

e major hypothesis underlying integrative systems biology approaches is that
heterogenic layers of evidence for a particular trait will coalesce on a few molecular
pathways. In the following, I will briefly outline integrative approaches that rely on
integration of both trait-specific evidence sources and pathway organization data to
leverage GWA analyses.

. Integrative approaches for genome-wide association data
analysis

Common to most integrative analyses is that they, to some extent, rely on re-analysis
of already available data sets. is trend is increasing as data generation is growing
faster than the manpower available for data analysis, as mentioned in a recent edit-
orial in Nature Genetics [Editorial, ]. In the following sections, I will give some
examples on integrative methods. Many of these methods rely on a priory defined bio-
logical information from databases. Databases most commonly used for retrieval of
information on functionally-related gene sets, PPIs, and metabolic networks are listed
in Table .. Databases that provide valuable phenotype-specific information are lis-
ted in Table .. Note that the following enumerations are not exhaustive as the field is
growing rapidly. Also, please be aware that the methods and databases described here,
solely focus on intracellular molecular networks. e research on molecular networks
that glue together cells, tissues, and organs still is in its very infancy and therefore not a
subject in this esis. For reviews on the challenges and limitations in pathway-based
approaches please refer to [Cantor et al., ,Elbers et al., ].
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Database Information Website Reference Comment
Biocarta Pathways www.biocarta.com - e database comprises a total

of  canonical pathways.
Kyoto Encyclope-
dia of Genes and
Genomes (KEGG)
Pathway

Pathways www.genome.jp/kegg/
pathway.html

[Ogata et al., ] e database comprises a
large collection of biological
pathways annotated through
literature-based searches.

Protein Analysis
rough Evolution-
ary Relationships
(PANTHER)
Pathway

Pathways www.pantherdb.org/
pathway

[omas et al., ] e database comprises >
signaling pathways.

Reactome Pathways www.reactome.org - e database contains ,
pathways.

Molecular Signa-
tures Database
(MSigDB)

Pathways and
gene sets

www.broadinstitute.org/
gsea/msigdb

[Subramanian et al.,
]

e database contains co-
expressed gene sets across a
large list of traits and conditions
(, curated gene sets, and
 canonical pathways).

Gene Ontology
(GO)

Gene sets www.geneontology.org [Ashburner et al., ] e database contains a con-
trolled vocabulary for gene
product annotations. For in-
stance the molecular function
ontology can be used to extract
all genes annotated with a
specific function.

Homo sapiens Re-
construction  (Re-
con )

Metabolic reac-
tions

http://bigg.ucsd.edu [Duarte et al., ] A high-confidence network
of human metabolism. See
Table ..

Continued on next page. . .
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Table . -- Continued
Edinburgh Human
Metabolic Network
(EHMN)

Metabolic reac-
tions

www.ehmn.bioinforma
tics.ed.ac.uk

[Ma et al., ] A high-confidence network
of human metabolism. See
Table ..

InWeb PPIs - [Lage et al., ] A PPI meta-database compris-
ing several other PPI databses:
BIND [Bader et al., ], Bio-
GRID [Stark et al., ], CO-
RUM [Ruepp et al., ], DIP
[Salwinski et al., ], In-
tAct [Hermjakob et al., ],
HPRD [Peri et al., ], MINT
[Chatr-aryamontri et al., ],
MPact [Güldener et al., ],
MPPI [Pagel et al., ] and
OPHID [Brown and Jurisica,
].

Interaction Refer-
ence Index database
(iRefWeb)

PPIs http://wodaklab.org/
iRefWeb

[Turner et al., ] A PPI meta-database integrat-
ing data from  predominantly
experimental databases (BIND,
BIND TRANSLATION, Bio-
GRID, CORUM, DIP, HPRD,
IntAct, MINT, MPact, MPPI,
and OPHID).

PINA PPIs http://csbi.ltdk.helsinki.fi/
pina

[Wu et al., ] A PPI meta-database integ-
rating data from  experi-
mental databases (IntAct,
MINT, BioGRID, DIP, HPRD,
MIPS/MPact).

Continued on next page. . .
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Table . -- Continued
STRING PPIs http://string-db.org [Szklarczyk et al., ] e database contains experi-

mentally derived and predicted
PPIs. e latter are referred to
as indirect PPIs as they do not
need to denote physical interac-
tions.

ConsensusPathDB PPIs, meta-
bolic, signaling
and regulatory
networks

http://cpdb.molgen.mpg.de [Kamburov et al., ] Ameta-database comprising in-
teraction data from  public
interaction databases and liter-
ature mining.

Table .: Overview of databases that provide information on pathways, gene sets,
protein-protein interactions (PPIs), metabolic reactions, and signaling networks.
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Database Information Website Reference Comment
NCBI Gene Ex-
pression Omni-
bus (GeO)

Gene expres-
sion datasets

www.ncbi.nlm.nih.gov/geo - Gene expression experiments in
standardized formats.

e European
Bioinformat-
ics Institute
ArrayExpress
database

Gene expres-
sion datasets

www.ebi.ac.uk/arrayexpress - Gene expression experiments in
standardized formats. Overlap-
ping with GeO.

e Human
Protein Atlas

Protein expres-
sion

www.proteinatlas.org [Uhĺen et al., ] Protein expression for the gene
products of , genes across
various tissues and cell lines.

NCBI database
for Genotypes
and Phenotypes
(dbGaP)

Genotypic
datasets

www.ncbi.nlm.nih.gov/gap [Mailman et al., ] A comprehensive archive of
genotype data from GWA and
sequencing studies.

European
Genome-
phenome
Archive (EGA)

Genotypic
datasets

www.ebi.ac.uk/ega - SNP and copy-number vari-
ation genotype data from GWA
studies and genotyping done
with re-sequencing methods.

National
Genome Re-
search Institute
(NHGRI) Cata-
log of Published
GWA Studies

SNP-phenotype
associations

www.genome.gov/GWAStudies [Hindorff et al., ] GWA study associations from
 publications comprising
, SNPs.a

Genetic Associ-
ation Database
(GAD)

Gene-
phenotype
relationships

http://geneticassociationdb.nih.gov [Becker et al., ] Associations from GWA studies
and candidate gene approaches.

Continued on next page. . .
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Table . -- Continued
NCBI Online
Mendelian
Inheritance in
Man (OMIM)

Gene-
phenotype
relationships

www.ncbi.nlm.nih.gov/omim - Manually curated archive of
inherited Mendelian disorders
and their associated genes.

GeneCards Gene-
phenotype
relationships

www.genecards.org [Safran et al., ] e GeneCards category Dis-
orders & Mutations reports as-
sociations between genes and
disease keywords based on text-
mining of PubMed abstracts.

Human Gen-
ome Epidemi-
ology Network
(HuGE)

Gene-
phenotype
relationships

http://hugenavigator.net/
HuGENavigator

[Yu et al., ] e HuGE Phenopedia web tool
facilitates lookup of associations
for a particular trait or disease.
e HuGE Genopedia web tool
facilitates lookup of associations
for a particular gene.

Table .: Overview of databases that provide trait and disease-specific evid-
ences sources, such as gene expression, protein expression, SNP-phenotype as-
sociations, and gene-phenotype relationships. Information from these databases
may serve as phenotype-specific evidence layers in integrative approaches as they
provide useful information on genes' and proteins' expression levels in various tis-
sues and under a plethora of conditions, and summarize the accumulated disease-
specific evidence for a particular gene or locus. Abbreviations: NCBI, National
Center for Biotechnology Information.
a Accessed March  





Approaches relying on pre-deĕned pathways
Many methods use pre-annotated gene sets to search for pathways that are enriched in
gene-products with SNPs exhibiting associations with the trait of interest (Tab. .).
e first and most highly cited method is a SNP set enrichment analysis approach de-
veloped by Wang et al in  [Wang et al., ]. Since then, several similar meth-
ods have been published, among others the MAGENTA method [Segrè et al., ].
Similar to the Wang et al method, MAGENTA is based on the algorithm used in tra-
ditional gene set enrichment analysis (GSEA) of gene expression data [Subramanian
et al., ]. In short, the GSEA framework uses a ranksum statistic to assess whether
predefined gene sets are enriched in the top or bottom of a sorted list of genes based on
differential expression or fold change in gene expression analysis, or SNPs' significance
in GWA studies.

An alternative approach is to assess the enrichment of pre-annotated pathways
based on z-scores. e original approach was presented by Ideker et al in  [Ideker
et al., ], andwe used this approach to score protein complexes for their enrichment
in GWA associations, as presented in Paper I on page .

e advantage of these approaches is that specific canonical pathways can be as-
sessed for enrichment of a given exposure as for instance SNPs. Disadvantages are that
in many cases, pathways have not been delineated and thus are not within databases,
and that pre-defined gene sets in many cases are computationally derived and thereby
more likely to be error prone. For instance  of all gene annotations in the Gene
Ontology database (GO) [Ashburner et al., ] is computationally derived and the
proportion of genes that have a least one experimental annotation is as low as  for
some organisms [Yon Rhee et al., ]. us, this type of approach strongly depends
on the specific gene sets tested for enrichment.

http://www.geneontology.org
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Method Integrated data
types

Soware or web tool Reference Comment

GRAIL GWA data and
text-mining

www.broadinstitute.org/mpg/
grail
(Web tool)

[Raychaudhuri et al., ] e method identifies pairs of
SNPs, within genes that are
co-mentioned in PubMed ab-
stracts.

INTERSNP GWA data and
KEGG pathways

http://intersnp.meb.unibonn.de
(C/C++ command line tool)

[Herold et al., ] e method searches for SNP-
SNP interactions and confines
its search space by use of pre-
defined biological information.

ALIGATOR GWA and GO
gene sets

http://x.psycm.uwcm.ac.uk/
∼peter
(Fortran command line tool)

[Holmans et al., ] e method identifies GO gene
sets that are enriched in GWA
signal.

SNP ratio
test

GWA data and
KEGG pathways

https://sourceforge.net/projects/
snpratiotest
(Perl command line tool)

[O'Dushlaine et al., ] e method assesses overrep-
resentation of GWA signal
within pre-specified pathways.

GSEA-SNP GWA data and
MSigDB gene sets

http://www.nr.no/pages/samba/
area emr smbi gseasnp
(R packageb)

[Holden et al., ] e method uses the GSEA al-
gorithm to assess enrichment of
GWA signal in pre-defined gene
sets.

GeSBAP GWA data, GO
gene sets, KEGG
and Biocarta
pathways

http://bioinfo.cipf.es/gesbap
(Web tool)

[Medina et al., ] e method assesses pre-
defined gene sets for enrich-
ment in GWA signal.

GSEA for
SNPs

GWA and PPI
data

www.openbioinformatics.org/
gengen
(Perl command line tool)

[Wang et al., ] e method uses the GSEA al-
gorithm to assess enrichment
of GWA associations in pre-
defined gene sets.

Continued on next page. . .
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Table . -- Continued
MAGENTA GWA data

and pathways
from KEGG,
Ingenuitya, PAN-
THER, Reactome,
BioCarta and GO

www.broadinstitute.org/mpg/
magenta
(Matlab scripts)

[Segrè et al., ] e method uses the GSEA al-
gorithm to assess enrichment
of GWA associations in pre-
defined gene sets.

Table .: Integrative approaches based on GWA data and pre-defined pathways.
Common to these methods is that they assess significance of GWA signal based
on pre-defined gene sets. Some of them use PPI data to reduce the search space
in which to assess SNP-SNP interactions. Only methods that provide publicly
available tools are listed.
a www.ingenuity.com;
b www.r-project.org
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Network-search approaches
Another set of approaches circumvent the reliance on canonical pathways and instead
search through gene networks to identify sub-networks enriched for a given trait (Tab.
.) - a general methodology pioneered by Ideker et al [Ideker et al., ]. ese
approaches are based on cellular networks as for instance predicted PPIs from the
STRING database [Szklarczyk et al., ], or experimental PPI meta-databases like
iRefWeb or InWeb [Lage et al., ]. Each gene in the network (represented as a net-
work node) is for instance scored based on the GWA data, and a heuristic algorithm
is used to search for sub-networks that are enriched in genes with better than expec-
ted scores. e advantage of these methods is that they do not require any assump-
tions about pathway delineation. A disadvantage is that oentimes large sub-networks
are found to be enriched, a critical point as it complicates interpretation and valida-
tion. In addition, no optimal solution is guaranteed as the search problem is known
to be NP-hard, which means that it cannot be solved in polynomial time. e first
network-search approach to be applied on GWA data was published by Torkamani et
al in  [Torkamani et al., ].
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Analysis type Integrated
data types

Soware or web tool Reference Comment

Analysis of
schizophrenia

GWA and
PPI data

jActiveModules [Ideker et al.,
]
(Cytoscapea plugin)

[Baranzini et al., ] e authors used the Cytoscape
plugin jActiveModules to search
for PPI sub-networks that were
enriched in GWA signal.

dmGWAS GWA and
PPI data

http://bioinfo.mc.vanderbilt.edu/
dmGWAS.html
(R package)

[Jia et al., ] e method identifies PPI sub-
networks that are enriched in
GWA associations.

Analyses of
 common
diseases

GWA and
PPI data

http://www.daimi.au.dk/
∼memily/BiRC/Soware.html
(C/C++ command line tool)

[Emily et al., ] emethod identifies SNP-SNP
interactions by constraining its
search space to pairs of SNPs
that reside in genes, which gene-
products are characterized by
mutual physical interaction.

Analyses of
 common
diseases

GWA and
PPI data

jActiveModules [Ideker et al.,
]
(Cytoscape plugin)

[Torkamani et al., ] e authors used the Cytoscape
plugin jActiveModules to search
for PPI sub-networks that were
enriched in GWA signal.

Table .: Network-based approaches for the analysis of GWA data. Common to
these methods is that they do not rely on any a priori defined gene sets, but rather
search through PPI networks to identify sub-networks that are enriched in GWA
signal. Only methods that provide or were based on publicly available tools are
listed. For more information on the specific databases and evidence layers, please
refer to Tables . and ..
a [Shannon et al., ], www.cytoscape.org
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Layer-based approaches
A third type of approaches is not using pre-defined biological contexts for integration
(Tab. .). Instead, these approaches rely on trait-specific evidence sources to produce
genome-wide evidence layers, which are summarized to a single meta rank that pri-
oritizes genes' significance across all evidence layers. ese methods assume that the
causal genes are within the top percentiles of a significant number of evidences layers
(not necessarily all), and thereby will show up in the top of the final meta rank. Ex-
amples of these types of methods are CANDID [Hutz et al., ] and MetaRanker
(Paper II p. ). An advantage of these methods is that they are flexible and allow in-
tegration of several heterogeneous data types. Disadvantages are that they require that
evidence layers are indeed phenotype-specific, since otherwise, the signal expected be
emerge across layers will be diluted and the causal genes will not appear in the top of
the final meta rank.

All of the approaches outlined in Tables .-. rely on a SNP to gene mapping
step, a gene scoring step, and some sort of pathway representation. e former two
points can be accomplished in several ways, and the latter likewise requires likewise
careful considerations, as outlined in the following sections.
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Method Integrated data types Soware or web tool Reference Comment
Bioĕlter GWA data; structural

information from the
Protein Families Database
(PFAM)a; GO gene sets;
DIP, Netpathb, KEGG, and
Reactome pathways

http://chgr.mc.vanderbilt.edu/
ritchielab/method.php
(Pre-processed data files
containing models)

[Bush et al., ] e method detects epistatic
SNP-SNP interactions by con-
fining the search space based on
various evidence sources.

SPOT GWA data, genes specified
by the user, and PolyPhenc
predictions

https://spot.cgsmd.isi.edu
(Web tool)

[Saccone et al.,
]

emethod prioritizes SNPs ac-
cording to their occurence in
user-specified genes and fore-
told functional effects based on
PolyPhen predictions.

Path GWA data, OMIM, KEGG,
PharmKBd, GAD, and the
Innate Immune Database
(IIDB)e

http://genapha.icapture.ubc.ca/
PathTutorial
(Java soware)

[Zamar et al., ] e method identifies SNP-
SNP interactions by use of the
evidence layer to constrain the
search space.

CANDID GWA data, text-mining,
protein domains, se-
quence conservation,
gene expression, PPI data,
linkage data, and custom
user-specified data

https://dsgweb.wustl.edu/
hutz/candid.html
(Web tool)

[Hutz et al., ] e method prioritizes all
human protein-coding genes
based on user-specified com-
binations of evidence layers.
e user can assign weights to
layers.

Continued on next page. . .
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Table . -- Continued
MetaRanker GWA data, PPI data, user-

specified disease genes,
linkage data, expression
data, and phenotype-
similarities established
by text-mining of the
GeneCards database

www.cbs.dtu.dk/services/
metaranker
(Web tool)

[Pers et al., ]
(Paper II)

e method prioritizes all
human protein-coding genes
based on user-specified com-
binations of evidence layers. All
layers are treated on an equal
footing.

Table .: Layer-based approaches based on multiple (>) evidence layers of dif-
ferent types. Only methods that provide publicly available tools are listed. For
more information on the specific databases and evidence layers, please refer to
Tables . and .. a [Finn et al., ], http://pfam.sanger.ac.uk;
b [Kandasamy et al., ], www.netpath.org;
c [Ramensky et al., ], http://genetics.bwh.harvard.edu/pph;
d [Klein et al., ], http://www.pharmgkb.org;
e http://db.systemsbiology.net/cgi-bin/GLUE/U/IIDBHome.cgi
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SNP to gene mapping

Findings from GWA studies have shown that most trait-associated SNPs perturb reg-
ulatory mechanisms that impact transcriptional or translational efficiency [Hardy and
Singleton, ]. Especially variants controlling expression levels of adjacent genes
are found to be overrepresented among trait-associated loci [Nica et al., ,Nicolae
et al., , Allen et al., ] (also referred to as in-cis expression quantitative trait
loci, as opposed to in-trans expression quantitative trait loci, which denote variants that
control distal genes' expression levels). Whereas this evidence oen originates from
analyses carried out in cell lines, a recent meta-analyses on waist-hip ratio provided
preliminary evidence from population-based cohorts [Heid et al., ]. e authors
reported that several of the waist-hip ratio associated SNPs were significantly associ-
ated with expression levels of adjacent genes across a range of relevant tissues.

Figure .: Mapping of SNPs to genes and subsequent scoring of genes. e red and
blue squares mark all SNPs (diamonds) that have been mapped to GeneX and GeneY
(green arrows), respectively. Note that SNPs are allowed tomap tomore than one gene.
A given gene is scored by assigning the lowest p-value of all SNPs mapped to it as its
gene p-value. Subsequently, this p-value is adjusted for the number of independent
SNPs mapped to the gene to yield an adjusted gene p-value (denoted by red and blue
circles for GeneX and GeneY , respectively. Abbreviations: logP, logarithm with base
 of the p-value; Padj., adjusted p-value;kb, kilo bases.

ese observations can be formulated into a parsimonious nearest-gene mapping
framework (Fig. .); SNPs aremapped to the genes in their neighborhood (i.e. within
a pre-defined distance), and are allowed to map to several genes. e advantage of
such an approach is that it is simple and guarantees mappings for a large fraction of
all SNPs and genes. For instance , () percent of the Affymetrix . SNPs
are mapped to , genes (using  kb upstream and  kb downstream flanking re-
gions). One of the approach's inherent limitations is its inability to capture long-range,

For instance variation in transcription factor bindings sites is known to play a major role in phenotype
diversity [Kasowski et al., ].

Briefly, expression quantitative trait loci analysis is a technique to assess whether a given variant influ-
ences genes expression levels. Studies have shown that every gene has an associated expression quantitative
loci in a given tissue under specific conditions [Nica et al., ]. For more information on expression
quantitative trait loci analysis please refer to [Quigley and Balmain, ].





i.e. trans-regulatory, SNP-gene relationships as for instance exemplified by the previ-
ously mentioned example on the association between the common colorectal cancer
pre-disposition SNP at q and its recently identified function as a long-range en-
hancer of the MYC oncogene.

Ideally the boundaries of genes' flanking regions would be gene-specific and based
on expression quantitative trait study data within the relevant tissues and under the
right conditions. However, for most traits this is currently not feasible. Nevertheless,
the approach has been used by most integrative GWA approaches, albeit with varying
length of the flanking regions extending the most extreme transcripts of a given gene.
e first pathway-based GWA analysis method by Wang et al used  kb as flanking
regions, sincemost enhancers of a gene are located within that distance, andmost link-
age disequilibrium block are less than  kb [Wang et al., ]. However, in a later
pathway-based landmark study Wang et al used  kb as flanking regions without any
particular argument for doing so [Wang et al., ]. Segre et al used  kb and  kb
in the MAGENTA tool and argued that their boundaries reflected the th percentile
of all cis-expression quantitative trait loci from nearest gene's start and end sites [Segrè
et al., ].

Gene scoring
e parsimonious way to score genes is to consider the most significant SNP mapped
to a given gene, as the p-value of that gene. However, longer genes tend to harbor
more SNPs, and thereby have an increased likelihood to incur SNPs that by chance
correlate with trait of interest across the individuals investigated (denoting so-called
chance-correlations). In addition, Bonferroni or Sidak correction cannot simply be
applied on the number of SNPs mapped to a given gene, since linkage disequilibrium
ties together adjacent SNPs into non-independent patterns. Figure . shows how this
parsimonious way of scoring genes would be strongly biased towards longer genes (Fig.
.a) and genes with more SNPs mapped to them (Fig. .b). I will briefly discuss
three possible ways used to alleviate these two biases in gene scoring frameworks.

One approach is to use permutation analysis to calculate SNP-count and linkage
disequilibrium adjusted gene p-values. First each gene is assigned a p-value that equals
the p-value of the most significant SNP mapped to the given gene (in the following
referred to as Pgene,raw). ereaer all individuals' phenotype-genotype relationships
are randomized and theGWAanalysis is re-computed a large number of times (>).
In each randomization a new Pgene,raw is calculated for each gene and subsequently
stored into gene-specific background distribution of Pgene,raw values. Upon comple-
tion of the randomization analysis, the background distribution is used to compute
the adjusted gene p-value for each gene (by counting the number of random Pgene,raw

values that are lower than the observed Pgene,raw). is approach is used in for in-
stance [Wang et al., ]. A drawback of this method is that it requires large comput-
ing resources since a total GWA study with  million SNP takes minutes to compute,
which means that , permutations would require weeks of computation time if
not parallelized.

Another approach is to calculate the number of effective tests a given set of linked
SNPs corresponds to. In other words, this framework takes the linkage disequilib-
rium between say k SNPs into account to estimate the number of independent tests

Data for these figures is taken from the NUGENOB intervention study GWA analysis (that was briefly
mentioned in the above description of population substructure, section . p. .), which is one ofmy ongoing
projects and not further described here [Sørensen et al., ].
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Figure .: Bias of the parsimonious gene scoring approach, in which a gene is scored
based on the lowest SNP p-value of all SNPsmapped to the given gene. Panel (a) shows
how longer genes are more likely to have lower minimum SNP gene p-values (referred
to as Pgene,raw in the text), and panel (b) illustrates that the same bias holds true for
the number of SNPs mapped to the given gene. (As expected, as the gene length and
number of SNPs mapped to a given gene are highly correlated.)

that are actually being tested (letting pairs of SNPs that are in high linkage disequilib-
rium only count once), and in most cases will be substantially smaller than k. Galwey
developed such a framework that relies on eigenvalue decomposition of the genotype
data to calculate the number of independent tests for a given set of SNPs and aer-
wards applies Sidak correction to adjust Pgene,raw with that number [Galwey, ].
Similar to the permutation-based approach, genotype data is needed to accomplish
this correction. In case genotype data for the study cohort or another control cohort
is not available genotype data from the HapMap or  Genomes projects can be
used. Based on Galwey's proposed scheme, I have implemented a soware tool that
enables researchers to perform the effective test gene scoring and used it in Papers I
- III. To test the tool, I used the permutation-based correction method to calculate
permutation-based p-values for all human protein-coding genes (Fig. .a-b). Here-
aer, I correlated them with the gene p-values derived by my implementation of the
Galwey approach, and confirmed that the Galwey correction framework actually was
alleviating the SNP-count bias, as the permutation-based p-values and Galwey adjus-
ted p-values were highly correlated, r2=. (Fig. .d). is analytical correction
approach is faster than the permutation-based approach as it does not rely on a vast
number of permutation rounds.

Finally, I would like to mention a third gene scoring approach. is approach was
used as part of the MAGENTA method [Segrè et al., ] and implements a lin-
ear regression framework to regress gene length in kb, number of SNPs per kb, in-
dependent SNPs per kb, number of recombination hotspots per kb, genetic distance
in centi-Morgan per kb on the Pgene,raw to adjusted obtain gene p-values. It does not
rely on genotype data and is computationally faster than the two above-mentioned ap-
proaches.

Using GWA data from the NUGENOB diet intervention study.
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Figure .: Gene p-values derived by permutation. Panel (a) and (b) show that the
permutation-based gene p-values are not correlated with neither gene length nor the
number of SNPs mapped to a given gene. Panel (c) illustrates that minimum SNP gene
p-values (referred to as Pgene,raw in the text) tend to be lower than the correspond-
ing permutation-based p-values. Panel (d) shows that the Galwey correction-based
p-values and permutation-based p-values are highly correlated (r2=.), even though
the Galwey correction method seems to slightly over-correct gene p-values.

In a recent GWA meta-analysis of human height, Allen et al found that allelic
heterogeneity may be a frequent feature within polygenic traits [Allen et al., ].
at finding may induce a refinement of the current minimum scoring gene scoring
methods, to incorporate the possibility of multiple independent common GWA sig-
nals within the same gene. In summary, both SNP to gene mapping and gene scor-
ing approaches leave room for improvements. Tissue and condition-specific mapping
approaches will become available in the near future as more systematic coupled gene
variation and gene expression data will be available.

Deĕnition and delineation of molecular pathways

Proteins that physically interact are very likely to be implicated in the same risk pheno-
type [Ideker and Sharan, ,Goh et al., ]. is premise onmodular organization
of cellular biology [Hartwell et al., ], also referred to as the guilt-by-association
hypothesis, underlies most pathway-based approaches. However, while clinical and
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cohort-based data sets are literately piling up in large data-centers, the mapping of mo-
lecular networks is still at a very early stage. It has been estimated that 5 to 6 of
protein-protein and protein-DNA interactions occur within a single cell [Heard et al.,
], a number which is still more than three times the number of all known PPIs
from large meta-databases (<, interactions). While most molecular compon-
ents are known, their spatial and functional relationships remain mostly elusive. Add
to that the interactions that are specific to certain conditions or developmental stages,
and it becomes even more clear that much still has to be learned.

Many canonical pathways from the KEGG and Biocarta databases resemble text-
books by presenting linear and independent representations of pathways. But, unlike
simplified figures in textbooks of molecular components' topology, cellular networks
are interwoven and condition-specific. us, pathways constructed based onmanually
annotated published text will necessarily be confined by the state of human knowledge
and prone to false-negatives [Kra and Raychaudhuri, ]. Experimentally-derived
PPIs produced by both large- and small-scale screenings techniques, partly alleviates
this bias. However, high-throughput experimentally-derived PPI also pose challenges
since theymay comprisemany false-positive interactions. Generally onemust be aware
of these limitations, since the overall pathway-based analysis will only be as good as the
PPI data is (in terms of accuracy and comprehensiveness). In the remainder of this sec-
tion I will discuss possible biases, when analyzing GWA data in the context of protein
complexes.

Protein-protein interaction meta-databases. ere has been a steady growth of inter-
actions in PPI databases (Fig. .). However, PPI databases are oen prone to a large
number of both false-negatives and false-positives. Whereas additional experiments
are the only way to improve the former, there are several measures that can be used to
confine the latter. Some of them are

i) to score PPIs based on the number of independent publications citing the PPI,

ii) to score PPIs based on the type of technology by which the given PPI was repor-
ted,

iii) to assign PPIs from small-scale studies higher confidence than PPIs from large-
scale studies, and

iv) to score PPIs based on their surrounding neighborhood's network topology. If
the non-shared interaction partners of a pair of interacting proteins are interact-
ing too, it is more likely that the primary interaction is genuine.

e four major PPI meta-databases are the Center for Biological Sequence Ana-
lysis in-house database InWeb [Lage et al., ], iRefWeb [Turner et al., ], Con-
sensusPathDB [Kamburov et al., ], and STRING [Szklarczyk et al., ] (see
Tab. .). In the InWeb database, we map out false-positive interactions by aggreg-
ating the above-mentioned confidence measures (i - iv) into a single score that can be

Experimental techniques for the discovery of PPIs are not a subject in this esis. Briefly, the most
oen used techniques to identify PPIs are purification methods that identify protein complexes, such as
immunoprecipitation [Phizicky and Fields, ] and affinity purification followed by mass spectrometry
[Gavin et al., ], and the yeast to hybrid technique to detect binary interactions [Ito et al., ].

http://wodaklab.org/iRefWeb
http://cpdb.molgen.mpg.de
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Figure .: Growth inmajor humanprotein-protein interaction (PPI) databases. Please
refer to Table . on page  for references on the various databases. Abbreviations: sm,
small-scale experiments; lg, large-scale experiments.

used to discard low-confidence interactions. In addition, asmost PPIs are derived from
model organisms, the InWebdatabase extends its coverage by inferring PPIs fromhigh-
throughput PPI screens in Saccharomyces cerevisiae, Drosophila melanogaster, Escheri-
chia coli andCaenorhabditis elegans. e InWeb database is not publicly available and
comprises approximately , non-redundant PPIs consolidated from , ori-
ginal publications. Consequently, it harbors more interactions than the largest human
interaction database HPRD [Peri et al., ]. iRefWeb integrates data from  pre-
dominantly experimental source databases. e current version . contains ,
non-redundant PPIs consolidated from , original publications. In addition to
PPIs, ConsensusPathDB integrates metabolic, signaling and gene regulatory interac-
tion networks, too. e database currently comprise , molecular components
and , physical interactions. STRING integrates both experimentally-derived
and predicted PPIs. e latter type of PPIs are predicted by signifying co-occurrence
of gene (or protein) pairs. In most cases, they denote indirect interactions, i.e. func-
tional rather than physical interaction.

As the coverage of PPI databases is growing and the number of falsely annotated
PPIs is decreasing, it ismy opinion that PPI data provides an unbiased andmore power-
ful resource to identify etiological pathways compared to in-complete manually annot-
ated pathways.

Confounding factors. Genes with similar functions may reside adjacent to each other
on the same chromosome; the histone cluster  genes on human p. is an oen
used example. When scoring gene sets, which for instance have been assembled based

Protein-protein interactions have been shown to be conserved between species [Butland et al., ].





on PPI data, based on GWA data, chromosomal co-localization may become a con-
founder. In the case where a given SNP with a non-random association with the trait
of interest is mapped to several genes that all are within the same gene set, the overall
score for the gene set is inflated because the assumed independence of gene scores is
violated. One solution is to filter out genes that have a co-localizing partner within a
given gene set. We applied this correction on the complexes used in Paper I and [Dal-
gaard et al., ].

. Paper I - A method for protein complex-based risk gene
mapping

In the following paper,MajkenK. Jensen and Imeta-analyzedGWAdata from two pro-
spective studies of incident coronary heart disease (CHD), and subsequently developed
a pathway-based analysis technique to search for protein complexes that are enriched in
GWA study signal. We identified a protein complex centered on the ADBR gene, that
was significantly enriched in proteins, which underlying genes had associations with
CHD. We validated our findings in independent phenotypic data sets from mouse and
human studies, which were not used in our discovery GWA analysis. By use of several
sampling steps, we showed that the top complex indeed associates with CHD.


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Background – Network-based approaches may leverage genome-wide association (GWA) analysis by 
testing for the aggregate association across several pathway members.  We aimed to examine if networks of 
genes that represent experimentally determined protein-protein interactions are enriched in genes associated 
with risk of coronary heart disease (CHD). 
Methods and Results – GWA analyses of ~700,000 SNPs in 899 incident CHD cases and 1,823  age- and 
sex-matched controls within the Nurses’ Health and the Health Professionals Follow-Up Studies were used 
to assign gene-wise p-values.  A large database of protein-protein interactions (PPI) was used to assemble 
8,300 unbiased protein complexes and corresponding gene-sets.  Superimposed gene-wise p-values were 
used to rank gene-sets based on their enrichment in genes associated with CHD.  After correcting for the 
number of complexes tested, one gene-set was overrepresented in CHD-associated genes (p-value=0.002). 
Centered on the beta-1-adrenergic receptor gene (ADRB1), this complex included 18 protein interaction 
partners that, so far, have not been identified as candidate loci for CHD. Five of the 19 genes in the top-
complex are reported to be involved in abnormal cardiovascular system physiology based on knock-out 
mice (4-fold enrichment; p-value, Fisher’s exact test= 0.006). Ingenuity pathway analysis revealed that 
especially canonical pathways related to blood pressure regulation were significantly enriched in the genes 
from the top complex.  
Conclusion – The integration of a GWA study with PPI data successfully identifies a set of candidate 
susceptibility genes for incident CHD that would have been missed in single-marker GWA analysis. 
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Genome-wide association (GWA) studies provide a unique opportunity for the unbiased exploration of 
novel genetic variation of importance to phenotypic traits. The first series of GWA studies of coronary 
heart disease (CHD) and more broadly defined cardiovascular disease (CVD) phenotypes elucidated DNA 
sequence variations at the 9p21.3 locus as a robustly replicated risk-conferring region,1, 2 3 but through a 
series of larger GWA study consortia about 10 susceptibility loci have been reported.4-6 The recent 
publication of results from the multi-ethnic Coronary Artery Disease (C4D) Genetics Consortium,7 the first 
Han Chinese GWA study,8 and the CARDIoGRAM consortium with more than 20,000 coronary artery 
disease cases,9 yielded  an additional 18 new loci. However, the complexity of the phenotype,10 small effect 
sizes, and between-study differences may complicate the identification of many true associations in meta-
analyses that necessarily assumes homogeneity across the individual studies.  Most GWA studies to date 
have focused on the identification of the strongest single-locus associations, but the identification of 
combined effects of many weakly associated variants is especially appealing for complex diseases, such as 
CHD, that is likely not caused by single variants or by a single biological pathway.  Thus, another 
suggested approach for reducing the noise inherent in moderately powered high-density data collected 
within internally homogenous populations, is the integration of additional biological data on pathway 
organization through the use of a protein-protein interaction (PPI) database.11-16 By enabling tests of sets of 
single nucleotide polymorphisms (SNPs) within physically interacting gene products (direct or indirect), 
PPI data can augment GWA analysis since a set of SNPs, each with a moderate, but genuine association, in 
aggregate may have improved statistical significance.  Although several databases provide gene-sets that 
resemble well-known canonical pathways, high-confidence PPI data may to a larger degree mimic the 
unbiased nature of GWA studies due to its increased coverage and detail of even non-canonical 
pathways.11, 17 Initial approaches have proven useful to suggest novel genes and gene-networks involved in 
other complex phenotypes such as obesity,18 type 2 diabetes,13 breast and pancreatic cancer,19 multiple 
sclerosis,20 and Crohn’s disease,21 that were not identified in the traditional GWA analysis.  The 
completeness of such integrative analysis relies strongly on the gene-sets tested.  We aimed to examine if 
networks of genes that represent experimentally determined protein-protein interactions are enriched in 
genes associated with risk of incident CHD. To leverage our GWA analysis of CHD within two 
homogenous American prospective cohorts including 899 incident cases collected through more than 10 
years of follow-up, we used our PPI database InWeb,14 which covers ~13,000 human proteins and 173,500 
high-confidence experimentally-derived protein-protein interactions based on 11 publicly available PPI-
databases.     
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Methods 
Study population 
The Nurses’ Health Study (NHS) enrolled 121,701 female nurses aged 30 to 55 who returned a mailed 
questionnaire in 1976 regarding lifestyle and medical history. The Health Professionals Follow-up Study 
(HPFS) enrolled 51,529 males aged 40 to 75 who returned a similar questionnaire in 1986. Participants of 
both cohorts have received follow-up questionnaires biennially to record newly diagnosed illnesses.  
Detailed descriptions of the study cohorts have been published previously.22, 23   
Blood collection and DNA extraction in nested case-control study 
Between 1989 and 1990, a blood sample was requested from all active participants in NHS and collected 
from 32,826 women. Similarly, blood samples were requested between 1993 and 1995 and obtained from 
18,225 HPFS participants. For details on storage of blood samples, please see the online supplement.  

In both cohorts, nested case-control studies were designed using incident CHD, with non-fatal 
myocardial infarction (MI) and fatal CHD as the outcome. Diagnosis of MI was confirmed on the basis of 
the criteria of the World Health Organization (symptoms plus either diagnostic electrocardiographic 
changes or elevated levels of cardiac enzymes). Deaths were identified from state vital records and the 
National Death Index or reported by the participant’s next of kin or the postal system. Fatal CHD was 
confirmed by an examination of hospital or autopsy records, by the listing of CHD as the cause of death on 
the death certificate, if CHD was the underlying and most plausible cause, and if evidence of previous CHD 
was available. Among participants who provided blood samples and who were free of diagnosed 
cardiovascular disease or cancer at blood draw, we identified 474 women and 454 men with incident CHD 
between blood draw and June, 2004. Using risk-set sampling,24 controls were selected randomly and 
matched in a 1:2 ratio on age, smoking, and month of blood return, among participants who were free of 
cardiovascular disease at the time CHD was diagnosed in the case.  In this study design, a control for an 
early case may be included again if the person develops CHD during follow-up, thus after counting such 
converters only once (as cases), the total number of samples sent for genotyping were 1354 HPFS samples 
and 1521 NHS samples.  
 The present study was approved by the institutional review boards at Brigham and Women’s 
Hospital and Harvard School of Public Health. 
Genotyping and Quality Control 
Details on the protocol for DNA extraction has been included in the online supplement.  Genotyping was 
done using the Affymetrix Genome-Wide Human 6.0 array and the Birdseed calling algorithm.25  
Genotypic data for a total of 1,330 HPFS samples (98%) passed laboratory technical quality control criteria 
and missing call <0.05. Likewise, 96% of the NHS samples were successfully genotyped. A subset of 312 
NHS samples were not genotyped together with the remaining CHD case-control set as they overlapped 
with previous GWA studies of breast cancer (Illumina 550) and type 2 diabetes (Affymetrix 6.0). These 
samples were processed and subjected to quality control as part of the earlier GWAS (leaving n=272 
samples with available data) and SNPs also present on the Affymetrix 6.0 platform were subsequently 
merged with the cleaned CHD data. Details on methods for data cleaning and assesment of population 
structure in the datasets are included in the online supplement.  Due to very few samples with substantial 
evidence of non-European genetic ancestry, these samples were excluded from subsequent analysis (n=24).  
SNPs that were monomorphic, had a missing call rate ≥2%, a HWE p-value <1×10-4, or a MAF <0.02 
were excluded, leaving a total of 724,881 in HPFS and SNPs that passed quality control in HPFS and 
721,316 in NHS for analysis of called genotypes.  Imputation of ~2.5 million SNPs was performed using 
MACH software (v1.0.16) with HapMap CEU phased II data (Release 22) as the reference panel.  
Genome-wide association analysis of coronary heart disease  
To analyze the association between each SNP (coded as counts of minor alleles) and risk of CHD, we ran 
logistic regression analysis using PLINK software.26 We adjusted for matching factors used in the design of 
the nested case-control study (age and smoking) and the top three eigenvectors.  We also analyzed the 
MACH dosage files of the imputed SNPs (with MAF ≥0.05) in logistic regression models (adjusting for 
same covariates as above) using the ProbABEL package from the ABEL set of programs.27 Fixed-effects 
meta-analysis was performed to combine the study-specific β-estimates using the METAL package.28   
 Systems biology-based approaches that integrate data on protein interactions are necessarily 
restricted to the protein-coding part of the genome.  We mapped all GWA SNPs that passed quality control 
to 21,800 protein-coding genes (423,450 mapped SNPs, ~57% of all SNPs on the Affymetrix 6.0 arrays) 
(Figure 1a). This process is gene-centric such that SNPs that are not within genes or their 70 kb upstream 
and 20 kb downstream flanking regions were discarded. SNPs were allowed to map to more than one gene. 



CIRCCVG/2011/960393	
  4	
  

Each gene was assigned a p-value based on the SNP with the lowest GWA p-value within the gene 
transcript(s) and its flanking regions. Subsequently, the Šidàk correction was applied to adjust the p-value 
for each gene  by the number of effective tests (uncorrelated number of SNPs within each gene and its 
flaking regions, as per Galwey 2007).16, 29 
Protein-Protein Interactions and CHD-specific protein complexes 
Protein-­‐protein interactions comprise both transient interactions (e.g. phosphorylation events) and stable 
interactions (e.g. the cytoskeleton). Our comprehensive, experimentally derived database of protein-­‐protein 
interactions InWeb (version 2.9) covers ~13,000 human proteins and 350,029 protein-protein interactions 
of which 173,500 can be regarded as high-confidence interactions (as described below).14 The database is 
updated on a monthly basis with interactions retrieved from all major experimental PPI databases (details 
available in online supplement). Strengths of the InWeb database include the relative high coverage (4-fold 
increase in number of interaction compared the Human Protein Reference Database, HPRD)30 and a 
quantitative assessment of  confidence in the reported interactions.  The (continuous) confidence score 
(ranging from 0 [low support] to 1 [strong support]) is assigned by taking into account a) the number and 
quality of the publications reporting each of the interactions and b) the number of shared interaction 
partners of two interacting proteins.14 The assembly of 8,531 gene-sets was accomplished by iteratively 
assigning each protein in the database and its first-order interaction partners to a protein complex (Figure 1, 
Step1b).  As such a construction of protein complexes results in a relatively large number of overlapping 
complexes, complexes that were more than 80% similar (similarity of gene-sets assessed by the Jaccard 
Index) were merged.  After superimposing the gene-wise p-values from the GWA analysis onto the 
network, we used a modified version of an approach published by Ideker et al. to iteratively assess whether 
any of the gene-sets that were derived from the protein complexes were enriched in CHD-associated 
genes.31 Given a gene-set of size k, this was accomplished by (1) converting all k gene p-values to z-scores 
using the inverse normal cumulative distribution function, (2) weighting them with the interaction 
confidence score of the protein-protein interaction with the central hub protein (a step that was not part of 
the original algorithm), (3) calculating a gene-set score by summing the weighted z-scores, and then (4) 
subtracting the sum of an average gene-set of size k (calculated based on 100,000 randomized gene-set 
scores), and dividing by the standard deviation of an average sub-network of size k.  Formally, step 1 can 

be formulated as , steps 2-3 as , and step 4 as 

, where pi denotes the p-value of gene i, zi denotes the z-score of gene i, F-1 

denotes the inverse normal cumulative distribution function,  the confidence score for the protein-
protein interaction between gene product i and the central hub gene product, Sgene-set denotes the score of the 
gene-set after steps 1-4, µk and σk denote the mean and standard deviation of 100,000 randomized gene-set 
scores, and Zgene-set denotes the final gene-set z-score. Using this methodology, all gene-sets were ranked 
based on their computed z-scores (Figure 1c).  Because SNPs were allowed to map to several overlapping 
genes, some gene-sets may be assigned artificially inflated scores if they comprise genes that overlap on a 
given chromosome and are scored based on the same low SNP p-value. To avoid this potential bias we 
discarded one of the genes in any overlapping gene pair in a given complex (genes were considered to 
overlap if their transcripts were closer than 200kb to each other). This approach should be considered as 
conservative as it avoids inflated complex scores, but in some cases may reduce significance of truly 
associated complexes that comprise co-localizing gene-products with independent associations. In our 
present analysis, the top complex remained the same with or without discarding overlapping genes (and for 
different exclusion thresholds). We assessed the significance of our observed top scoring complex by 
comparing its score with a background distribution of 100 scores generated under the null hypothesis that 
the complex is not associated with CHD case control status. The background distribution was estimated on 
the basis of 100 permutations of our GWA meta-analysis (randomizing the case control status) and re-
computations of the gene scoring- and complex scoring step for each permutation. An ideal scenario would 
include up to 1 million permutations but the aggregate computing times for the GWA analysis, the gene 
scoring step, and the complex enrichment analysis did not allow for this.  
 After identification of the top-ranking complex we searched the literature to see if the genes were 
known as human CVD candidate genes. To assess over-representation of known CVD susceptibility genes 
we used a list of 123 genes reported by Samani et al.  and updated it with GWA findings in the NIH 
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Catalog of Genome-Wide Association Studies (Suppl. Table 1).3, 32 We also tested for overrepresentation of 
a list of 889 genes found to affect the cardiovascular system physiology (MP:0001544) in knockout mice 
(Mouse Genome Informatics database; www.informatics.jax.org, Jackson Laboratory, Bare Harbor Maine) 
(of which 837 were among the gene products in our PPI database). To ensure that the observation that 
genes from our top complex were overrepresented in the mouse cardiovascular physiology gene-set was not 
due to chance, we compared the observed enrichment score to a background distribution of 10,000 scores 
computed based on randomly sampled protein complexes. Each of the random complexes matched the 
observed complex in size, and each gene-product was sampled with a probability equal to its observed 
prevalence in the total set of protein complexes. In addition to the enrichment analysis of known human 
and mice CHD risk genes, we used the Ingenuity Pathway Analysis software tool (IPA, version 9.0, 
Ingenuity Systems Inc. 2011) to systematically test the complex genes for pathway enrichment.
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Results 
Characteristics of incident cases and matching controls in the two cohorts are presented in Table 1. The 
women in the NHS were slightly younger, more likely to smoke, and more likely to report a diagnosis of 
hypertension or diabetes. GWA analysis of each cohort separately and in meta-analysis did not reveal any 
markers that exceeded the genome-wide significant threshold (Supplement, fig 1).  

Based on the InWeb database, a total of 8,351 protein complexes were assembled based on large-
scale proteomics data from human and model organisms.  We restrained our analyses to high-confidence 
protein-protein interactions only, including a subset that we recently validated experimentally in human 
heart tissue.45 The resulting protein complexes were tested for enrichment in CHD-associated genes by 
using the gene-wise p-values from the GWA analysis to create z-scores and ranking the complexes (gene-
sets) by their combined z-scores, adjusted for the size of each gene-set, and weighted by the confidence of 
the interactions between the peripheral gene-products and the central protein of the complex.  After 
correcting for the number of complexes tested, one gene-set was significantly overrepresented in CHD-
associated genes from our GWA meta-analysis (p-value=0.002).  The gene complex was centered on the 
known candidate gene for the beta-1-adrenergic receptor (ADRB1) (fig. 2).  To ensure that the top complex 
was not merely significantly enriched in genes with low p-values but indeed significantly associated with 
CHD case control status, we permuted the phenotype-genotype association in the GWA analysis 100 times 
and re-computed the complex score at each iteration.  We found that the score for the observed ADBR1 
complex was superior to any of the scores for the randomized complexes.  In Figure 2, the additional 18 
genes that were part of the complex of interacting proteins are scaled according to their gene-wise p-values.  
As shown in more detail in Table 2, the genes; membrane-associated guanylate kinase inverted 1 (MAGI1), 
the protein kinase cAMP-dependent catalytic alpha (PRKACA), and the Golgi associated PDZ and coiled-
coil motif containing (GOPC) were nominally significant after correcting for the number of independent 
SNPs in each gene, whereas the remainder showed weaker, or no association. In the combined test of a 
gene-set, all known interaction partners are included regardless of their GWA signal and the strength of the 
association for the complex relies on the sum of all gene-wise p-values of the interacting genes.  Our results 
did not change when we based our analysis on the imputed GWA data rather than the hard-call genotypes.  

Next, we assessed whether the ADBR1 complex was enriched in known human or mice CVD risk 
genes.  No significant overlap with the list of 123 susceptibility genes reported by Samani et al. and the 
genetic loci identified in GWA studies of CVD was observed (p-value=0.1). 3, 32 To test for enrichment in 
CHD-specific evidence from mouse studies, we searched for the genes in the top-complex in an a priori 
defined set of genes causing abnormal cardiovascular physiology in knockout mice.  Among a total of 889 
genes reported for that phenotype, 837 human homologs were among the 12,793 genes included in our 
analysis, and 5 were part of the 19 genes in the ADRB1 complex; representing a 4-fold enrichment (p-value, 
Fisher’s exact test =0.006). The five genes also found in mice knockout gene-sets, were ADRB1, ADRA2A, 
ARRB1, PDE4D, and GRB2 of which all except PDE4D were reported to play a role in the regulation of 
blood pressure, cardiac function, and hypertrophy.  Because proteins that are known to interact physically 
are more likely to have similar functional annotation,33 possible chance-correlations resulting in a gene with 
a low p-value could potentially result in a falsely associated complex if the falsely associated gene’s 
annotation resembles the phenotype of interest. To test for this possible bias, we subjected the mouse gene-
set enrichment analysis to 10,000 random complexes sampled from the PPI network and found that only 13 
out of the 10,000 randomized enrichment scores were lower than our observed score (p-value=0.001). 

We used Ingenuity Pathway Analysis to examine whether the annotations of the genes in the 
ADRB1 complex were enriched for any particular phenotype. Between 10 and 12 of the 19 genes were 
reported in cardiovascular, neurological, endocrine, and immunological disorders (Table 3).  Moreover, 
several cardiovascular related pathways were enriched in genes from the complex. The top canonical 
pathway was cardiac hypertrophy signaling.  To better ensure that the observed enrichment was not due to 
chance, we sampled 100 random gene-sets comprising 19 genes each, and performed IPA analysis based on 
each set. Only one random gene-set exhibited enrichment in cardiovascular disease genes as strong as the 
observed enrichment for the ADBR1 complex gene-set. Thus, we conclude that our top complex was 
significantly enriched in genes associated with cardiovascular disease (p-value< 0.05).  None of the random 
gene-sets were significantly enriched in the cardiac hypertrophy canonical pathway, suggesting that the 
ADBR1 complex gene set was significantly enriched in genes from this pathway too. We confined this IPA 
permutation analysis to 100 iterations as the software does not allow automation and all runs were done 
manually.  
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Discussion 
We conducted a protein network-based GWA analysis to leverage our moderately powered GWA study of 
CHD. Using GWA data from two individually homogeneous studies, we integrated the gene-wise p-values 
with a large database of protein-protein interactions.  By exploiting the complementary nature of genetic 
variation and biochemical data, we successfully identified a gene complex of 19 candidate genes that may 
play a role in the etiology of incident CHD. Subsequent pathway enrichment analysis indicated that the top 
complex was significantly enriched in (a) genes from the canonical cardiac hypertrophy signaling pathway 
(the highest ranking pathway in the IPA analysis), (b) genes annotated with cardiovascular disease (the 
second most enriched trait in the IPA analysis), and (c) mouse genes annotated in the cardiovascular system 
physiology. Our results provide preliminary evidence that known CHD-related genes coalesce onto distinct 
protein complexes.  Most of the genes in the top complex had relatively small effect sizes, making them 
unlikely findings in traditional single-locus GWA analyses of CHD.   

To our knowledge, our study of incident CHD is the first attempt at integration of data on the 
human interactome with GWA data in relation to incident CHD.  As shown in the enrichment analyses, the 
top complex comprises several genes that previously have been annotated to cardiovascular disease and, in 
particular, the cardiac hypertrophy signaling pathways. Except for ADRB1, these known genes were not 
nominally significant by themselves but leveraged due to their interaction with genes that comprised SNPs, 
which exhibited association with CHD in our GWA study.  In addition, the top complex was significantly 
enriched in genes from the Mouse Genetics Initiative database that were annotated in the ‘cardiovascular 
system physiology’.  The genes ADRB1, GRB2, ADRA2A were found to overlap between all three a priori 
defined gene-sets (overview provided in Table 4).  It is well-known that the β1-adrenergic receptor plays an 
important role in the regulation of cardiac contractility. In candidate genetic studies, ADRB1 SNPs have 
been associated with blood pressure34 and risk of future CHD, which might be particularly true for 
individuals with elevated blood pressure.35  Studies on the adrenergic pathway genes, including ADRA2A, 
that encodes the α2A-adrenergic receptor, have not shown consistent associations. However, recently a 
polymorphism in ADRA2A that caused overexpression of the protein, was shown to strongly reduce insulin 
secretion from pancreatic cells and be associated with an elevated risk of type 2 diabetes.36 The GRB2 gene 
encodes the growth factor receptor-bound protein 2. So far, information on this genetic locus links it to an 
important role in lymphocytes and growth cells, but no human genetic epidemiologic studies have 
investigated this locus in relation to cardiometabolic disorders.  

Alternative approaches for augmenting GWA data by testing significance beyond single locus 
associations include pathway-based approaches, such as methods that search the protein interactome for 
dense subnetworks enriched in GWA signal19, 20 and methods that assess pre-defined gene-sets for 
enrichment in GWA signal,16, 17, 37 The former class of methods are inspired by early work of Ideker,31, 381 
and employ an heuristic search algorithm to identify subnetworks that are enriched in gene-products that in 
aggregate associate with the phenotype. The advantage of these methods is that they do not assume any a 
priori delineation of pathways. However, the main drawback is that they rely on user-specified parameters 
that control the size of the subnetworks identified by the algorithm. In addition, none of them incorporate 
information on the confidence of the experimentally derived protein-protein interactions.  While our 
approach resembles the recently presented dmGWAS approach,19 only ours incorporated a score on 
confidence in the reported interactions. Another strength of our approach is that it is based on a PPI 
database that, despite its high coverage (our analysis includes twice as many interactions as those used in 
the dmGWAS method), solely includes high-confidence experimentally derived interactions. While InWeb 
does not rely on predicted protein-protein interactions, which are more prone to false-positive interactions, 
it still entails approximately 173,500 interactions from a total of 11 databases. Our integration-based 
approach has strengths, but limitations as well. One of the inherent limitations is that it only covers roughly 
60% of all SNPs present on genotyping platforms. Consequently, SNPs within distal enhancer regions are 
discarded, as are other long-range regulatory relationships. However, systematic tissue- and condition-
specific expression quantitative trait loci analyses are increasingly contributing to the development of more 
refined SNP to gene mapping schemes.  Among other limitations, we had a relative small sample size in 
our GWA study of incident CHD and were limited to Caucasians.  However, the application of the novel 
PPI approach still allowed us to uncover gene sets that were not otherwise identified.  Replication in 
another prospective study setting is necessary to verify and demonstrate the importance of our identified 
top complex in incident cardiovascular disease.  To test at the gene-level, genome-wide data would be 
preferable. However, we have not been able to identify a prospective study of CHD with sufficient number 
of cases where our protein interaction-based analysis could be repeated. Alternative approaches might be 
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the creation of a score of the top SNPs within the genes of the ADBR1 complex. However, such an 
approach might be limited as a single SNP is unlikely to capture the variation at the locus. 

In conclusion, our approach suggests that integration of other layers of biological evidence with a 
moderately powered GWA study of CHD in two homogenous study populations can yield potentially 
interesting sets of candidate genes that would be missed in traditional statistical GWA analyses.   We 
identified one gene-set, centered on ADRB1, that was overrepresented in CHD-associated genes in our 
GWA study and also enriched in genes involved in the cardiovascular disease phenotype and particularly 
blood pressure regulation pathways. Our novel approach highlighted 19 genes that warrant further 
association and functional studies in terms of risk of CHD and blood pressure.  
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 Table 1.  Baseline characteristics of women and men in whom coronary heart disease developed during 
follow-up and matched controls in the Nurses’ Health Study (NHS) and the Health Professionals Follow-
Up Study (HPFS).*   

 HPFS NHS 

Characteristic  Cases Controls Cases Controls 

N 425 878 464 945 

Age, years  64.5 (8.6) 64.2 (8.5) 60.2 (6.3) 59.8 (6.3) 

Women, % 0% 0% 100% 100% 

Hypertension, † %  37.2% 29.0% 50.2% 27.3% 

Diabetes, †%  9.0% 3.8% 14.4% 6.24% 

Current smoker, %  9.7% 8.7% 27.8% 26.1% 

Total cholesterol, mg/dL  5.5 (1.0) 5.2 (1.0) 6.1 (1.0) 5.9 (1.0) 

HDL cholesterol, mg/dL  1.1 (0.3) 1.2 (0.3) 1.3 (0.4) 1.6 (0.4) 

Triglyceride, mg/dL  1.8 (1.5) 1.5 (2.2) 1.6 (1.0) 1.3 (0.7) 

BMI, kg/m2  26.0 (3.2) 25.6 (3.3) 26.0 (6.6) 24.5 (5.8) 

*Age and smoking were matching factors. Values are means and standard deviation of continuous 
covariates (except triglyceride levels which is reported as median and IQR) or percentages.  Triglyceride 
levels were log-transformed before analysis and only reported in fasting participants (HPFS= 65%, NHS= 
79%).  
† Self-reported diagnosis before blood draw. 
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Table 2.  Genes and primary SNPs in the top-ranking protein complex based on the GWA meta-analysis of 
risk of CHD in the Nurses’ Health and Health Professionals Follow-Up Studies. 
Gene Gene  

p- value* 
Top SNP MAF OR Top SNP, 

raw p-value 
# SNPs in 

gene 
# independent 
SNPs in gene 

        
MAGI1 7.8E-04 rs7620106 0.40 1.30 9.1E-06 251 86 
PRKACA 0.004 rs40282 0.46 1.20 0.002 2 2 
GOPC 0.028 rs12664183 0.28 1.23 0.001 100 27 
ADRB1 0.041 rs17653278 0.06 0.70 0.003 41 12 
MAGI3 0.073 rs4839312 0.26 1.21 0.005 62 14 
MAGI2 0.086 rs2065198 0.46 1.22 0.001 579 149 
GRB2 0.107 rs7223674 0.05 0.72 0.014 32 8 
DLGAP2 0.143 rs7836020 0.45 1.18 0.005 100 33 
ARRB1 0.217 rs2279129 0.08 0.75 0.013 34 19 
DLG4 0.251 rs5412 0.16 1.15 0.069 7 4 
GNAL 0.277 rs2848465 0.22 0.83 0.009 85 36 
GIPC1 0.304 rs4926215 0.47 0.89 0.042 15 8 
DLG1 0.335 rs7616531 0.26 1.17 0.020 56 20 
GPRASP1 0.348 rs17340189 0.11 1.15 0.090 6 5 
ADRA2A 0.355 rs7908645 0.34 1.13 0.056 15 8 
SH3GL3 0.441 rs8025427 0.42 1.15 0.018 68 31 
GNAS 0.508 rs1022697 0.43 1.13 0.032 50 21 
SH3GL2 0.562 rs10810813 0.16 0.83 0.019 162 43 
PDE4D 0.677 rs17799450 0.08 1.34 0.015 312 74 
*adjusted for the number of independent SNP within loci (see last column, independent SNPs in gene). Full 
gene names available in online supplement. 
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Table 3. Diseases and Disorders, and canonical pathways enriched in genes from top complex, identified 
by Ingenuity Pathway Analysis  
IPA Disease/Disorder  P-value for enrichment # genes 
Respiratory Disease  2.34E-07 - 5.00E-02 3 
Cardiovascular Disease  1.12E-05 - 4.31E-02 12 
Neurological Disease  2.81E-05 - 3.51E-02 12 
Endocrine System Disorders  3.63E-05 - 2.94E-02 10 
Immunological Disease 3.63E-05 - 1.56E-02 11 

 
IPA canonical pathway P-value for enrichment Ratio (# genes in top complex/ 

total # genes in pathway) 
Cardiac Hypertrophy Signaling 1.62E-07 0.024 (6/246) 
G Beta Gamma Signaling 3.28E-06 0.034 (4/117) 
cAMP-mediated Signaling 5.75E-06 0.023 (5/216) 
PTEN Signaling 6.83E-06 0.033 (4/123) 
Cardiac b-adrenergic Signaling 1.43E-05 0.026 (4/151) 
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Table 4.  Overview of genes* in the identified top complex and their implication in the IPA cardiovascular 
disease set (CVD), the cardiac hypertrophy signaling pathway (Hypertrophy) and the mouse knock out 
models of abnormal cardiovascular physiology (MGI).   

Gene SNP CVD  Hypertrophy MGI 
MAGI1 rs7620106 yes No no 
PRKACA rs40282 no Yes no 
GOPC rs12664183 no No no 
ADRB1 rs17653278 yes yes yes 
MAGI3 rs4839312 yes no no 
MAGI2 rs2065198 yes no no 
GRB2 rs7223674 yes yes yes 
DLGAP2 rs7836020 yes no no 
ARRB1 rs2279129 no no yes 
DLG4 rs5412 no no no 
GNAL rs2848465 yes no no 
GIPC1 rs4926215 no yes no 
DLG1 rs7616531 no no no 
GPRASP1 rs17340189 no no no 
ADRA2A rs7908645 yes yes yes 
SH3GL3 rs8025427 yes no no 
GNAS rs1022697 yes yes no 
SH3GL2 rs10810813 yes no no 
PDE4D rs17799450 yes no yes 

 
*Full gene names available in online supplement. 
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Figure Legends: 
Fig 1. Conceptual framework for the integration of GWA data with protein-protein interaction data. The 
approach consists of three overall steps. First, GWA meta-analysis , SNPs are mapped to genes, genes are 
scored based on its most significant SNP, and the gene scores are adjusted by the number of independent 
SNPs mapped to the given gene. Second, protein complexes are assembled based on experimentally 
derived protein-protein interactions. Finally, the gene-sets underlying the protein complexes are scored 
based on their genes’ p-values and their protein-protein interaction confidence scores. 
 
Fig 2. Top-ranking protein complex from the genome-wide analysis of coronary heart disease in the 
Nurses’ Health and the Health Professionals Follow-Up Studies. The gene products (nodes) are scaled in 
size according to their significance (larger indicates smaller p-value).  Edges between the nodes denote 
experimentally-derived protein-protein interactions. Red nodes denote genes in the complex with corrected 
gene-wise p-values < 0.05.  
Full gene names available in online supplement. 
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. Paper II - A method for evidence layer-based risk gene mapping

e following paper presents a method that maps candidate disease genes based on a
broad range of relevant evidence sources, such asGWAdata, propensity to interact with
proteins encoded by known disease genes, data from linkage studies, genetic evidence
from similar phenotypes, and differential gene expression data. Our framework is very
general and can incorporate essentially any source of data the researcher finds relevant.

We apply the methodology to bipolar disorder, a complex psychiatric disorder
for which GWA studies have only been moderately successful, and follow up with an
experimental validation of the top candidate by genotyping  polymorphisms in the
YWHAH gene in  patients and , controls in two independent cohorts. We
thereby prove association between the rs polymorphism and bipolar disorder.

One of the important features of the method is that it directly points at causal re-
lationships of the highest scoring susceptibility genes. is is illustrated in the paper
by discussion of the precise, biochemical context of top ranking genes, which is a key
problem needed in current GWA study follow-up, where no immediate link to func-
tional implications result from the pure statistical association.

Rare coding mutations with potentially large effects are typically missed in mod-
estly powered GWA studies. ese potentially missed variants are of high value, be-
cause they can help decipher the molecular basis of the disease, since they are more
straightforwardly transferred to model systems for subsequent biological studies. is
fact stresses the need to evolve general methods for genome-scale candidate prioritiz-
ation, complementary to GWA studies, to identify a more complete range of potential
susceptibility variants in highly polygenic common human traits.


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INTRODUCTION

Generally, efforts to find major risk factors for complex,
polygenic diseases using GWA studies only have been
moderately successful [Maher, 2008; Ropers, 2007]. A wide-
spread explanation is that complex diseases, unlike rare and

monogenic diseases, may be caused by multiple individual
susceptibility alleles with low effect sizes [Kryukov et al.,
2007; Pritchard, 2001; Purcell et al., 2009; Sklar et al., 2008].
The modest contributions of rare risk alleles combined with
massive statistical chance-correlations in the genome-wide
association (GWA) analyses require large cohorts and
refined single nucleotide polymorphism (SNP) selection

r 2011 Wiley-Liss, Inc.



strategies to make replicable discoveries [Lettre et al., 2008;
Sandhu et al., 2008; Zeggini et al., 2008].
A common strategy to alleviate the problems of

detecting common variants is to expand the study cohorts.
Crohn’s disease and lipid levels are examples where large
collaborative meta-analysis has uncovered between 20 and
50% of the genetic variance [Barrett et al., 2008; Teslovich
et al., 2010]. However, currently less than 10–20% of the
variation observed in highly heritable traits such as human
height and type 2 diabetes (T2D) has been accounted for
by such efforts [Lango Allen et al., 2010; Voight et al.,
2010]. Thus, a large part of the scattered and rare genetic
risk factors in complex diseases still remains to be
identified [Altshuler and Daly, 2007; Couzin and Kaiser,
2007; Shriner et al., 2007].
We propose a widely applicable approach to identify

susceptibility genes based on meta-analysis of heteroge-
neous molecular data sets, which is complementary to
GWA-based meta-analyses that combine data of the same
type. We present a flexible method that augments modestly
or underpowered GWA data and prioritizes the genome in
relation to the phenotype of interest by integrating
potentially complementary evidence layers of heteroge-
neous data sources for a given risk phenotype or disease.
They include:

(1) SNP to phenotype associations from GWA studies
which represent a rapidly growing resource of unbiased
genome-wide associations of common risk-alleles.

(2) Interacting pairs of candidate proteins and proteins
encoded by known phenotype susceptibility genes—a
type of data which also targets rare alleles. Two
proteins involved in the same biological (dys)function
often interact. This trend has been confirmed across
several species [Gavin et al., 2006; Giot et al., 2003; Li
et al., 2004; van Driel et al., 2006] and compared to
other types of networks, protein-protein interactions
appear to be an excellent data source for phenotypic
enrichment [Fraser and Plotkin, 2007].

(3) Data from linkage studies capturing co-segregation of
chromosomal regions and disease-specific phenotypes
in families is another methodology complementary to

GWA analyses capable of identifying regions harboring
rare disease-specific variants.

(4) Quantitative data on disease similarities, which may
add information that cross normal disease definition
barriers [Allan et al., 2008]. Integration of genes
involved in diseases similar to the phenotype of
interest may supplement the phenotype-specific evi-
dence identified in the above layers 1–3.

(5) Gene expression levels may be affected directly or
indirectly by polymorphisms associated with disease.
Differential expression between cases and controls
may also add important tissue-specific information.

The strategy allows for the integration of complemen-
tary data sources in a single meta-analysis leading to a
prioritization of protein-coding genes from the entire
genome in relation to one particular indication. Although
we use these specific data types here, any number and
combination of evidence layers can be used. The data
sources can be perceived as layers that are collapsed into
an integrative meta-layer providing an informed selection
of new candidates (Fig. 1). The integration provides a list
of high-ranking candidate genes with robust support from
the different evidence layers, where a small number of
genes subsequently can be subjected to further experi-
mental analysis.
The method suggested here makes use of and includes

GWA data on a par with other data types and produces an
independent evidence layer from this source of data as
well. Previous gene-prioritization approaches have either
(a) used one particular data type as a scaffold for
integration of other data types, thus constraining the joint
ranking of complementary disease associated evidence
[Baranzini et al., 2009; Elbers et al., 2009; Emily et al., 2009;
Herold et al., 2009; Holden et al., 2008; Holmans et al.,
2009; O’Dushlaine et al., 2009; Pan, 2008; Pattin and Moore,
2008; Torkamani et al., 2008], (b) relied solely on one or two
molecular data types [Bush et al., 2009; Medina et al., 2009;
Saccone et al., 2008; Zamar et al., 2009], or (c) not used
GWA data for integrative purposes at all [Adie et al., 2006;
Aerts et al., 2006; Ala et al., 2008; Calvo et al., 2006; Franke
et al., 2006; Freudenberg and Propping, 2002; Gaulton

Fig. 1. Integrative approach to gene prioritization for a given disease. In this example, five data sources represent evidence layers which
are converted into rank distributions. The evidence layers are subsequently integrated into a single meta-evidence rank, quantifying
the likelihood of genes being involved in the disease. The meta-evidence based rank can subsequently be visualized using a protein-
protein interaction network. Note that all data types are treated similarly and symmetrically when computing the meta-rank.
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et al., 2007; George et al., 2006; Ghazalpour et al., 2006;
Goehler et al., 2004; Hristovski et al., 2005; Ideker
and Sharan, 2008; Kohler et al., 2008; Lage et al., 2007a;
Lesnick et al., 2007; Lim et al., 2006; Linghu et al., 2009;
Lopez-Bigas and Ouzounis, 2004; Ma et al., 2007; Perez-
Iratxeta et al., 2005; Pujana et al., 2007; Rossi et al., 2006;
Sharma et al., 2010; Tiffin et al., 2005; Turner et al., 2003;
van Driel et al., 2005; Vanunu et al., 2010; Wood et al.,
2007; Wu et al., 2008; Xu and Li, 2006; Yu et al., 2008]. When
integrated, most commonly, GWA data have been com-
bined with one or two molecular data types only, thus not
taking advantage of the full spectrum of genetic evidence
for a specific disease. These approaches include integration
of GWA data with biological pathway information from
KEGG [Kanehisa et al., 2008], pathways in general [Bush
et al., 2009; Elbers et al., 2009; Medina et al., 2009;
O’Dushlaine et al., 2009; Zamar et al., 2009], gene ontology
databases [Bush et al., 2009; Franke et al., 2006; Holmans
et al., 2009; Medina et al., 2009; Wang et al., 2007], a priori
known disease susceptibility pathways [Lesnick et al., 2007;
Wilke et al., 2008], BioCarta pathways [Medina et al., 2009],
protein interaction networks [Baranzini et al., 2009;
Elbers et al., 2009; Emily et al., 2009; Franke et al., 2006;
Linghu et al., 2009; Pan, 2008; Pattin and Moore,
2008; Torkamani et al., 2008], OMIM [Hamosh et al.,
2002], linkage data [Saccone et al., 2008], or a priori defined
gene sets [Holden et al., 2008]. Again, as these approaches
proceed solely within a few data types, they do not take full
advantage of the broad spectrum of genetic evidence for at
specific disease. One of the exceptional methods allowing
GWA data to be integrated with other genetic evidence
sources is the CANDID software tool [Hutz et al., 2008].
We demonstrate and benchmark our approach (denoted

MetaRanker) by making an integrative meta-rank analysis
of bipolar disorder (BD) and validate a new candidate by
investigating a top-ranking gene that has very strong
support when integrating BD specific evidence from GWA
data, linkage data, known candidate genes, genes from
similar diseases, and expression data. In our validation a
common allele in 14-3-3eta (YWHAH) gene strongly
associated to BD, implicating serotonin biosynthesis in
the etiology of this common psychiatric disorder, and
confirms the strength of conducting meta-analyses not
only within one type of data, but also across multiple data
sources. As discussed below, YWHAH has also been found
in another recent study, why our finding must be
considered as replication. Together, the genotyping further
strengthens the validity of our approach. In addition we
apply and benchmark MetaRanker on T2D to showcase
the generality of the approach. MetaRanker is available as
a web service at www.cbs.dtu.dk/services/metaranker.

METHODS

DATA SOURCES

From WTCCC’s website (http://www.wtccc.org.uk/)
we downloaded the summary statistics for the study
of BD and T2D on the Affymetrix 500k platform. The
bipolar study comprised genotypes from 1,868 bipolar
patients and 2,938 controls [Wellcome Trust Case Control
Consortium, 2007]. The T2D study comprised genotypes
from 2,000 diabetic subjects and 2,938 controls.
We reviewed the literature on major depression, mania,

and BD to find seed genes associated with these

phenotypes. Of particular relevance were the molecular
mechanisms related to monoamines, stress response,
neurodevelopment, lithium treatment, neuronal signaling,
and circadian control. We selected genes critical to one or
more of these molecular systems resulting in a list of 34
seed genes (Supplementary Table I). For the T2D analysis
we obtained seed gene sets from two recent reviews [Doria
et al., 2008; Florez, 2008] (Supplementary Table IX).
Protein-protein interactions were retrieved from the
InWeb interactome, which is a human protein-protein
interaction network based on experiments in both humans
and model organisms [Lage et al., 2007a]. InWeb is the
outcome of an integrative pipeline assembling and reducing
experimental data from BIND [Bader et al., 2001], DIP
[Salwinski et al., 2004], BioGRID [Stark et al., 2006],
HPRD [Peri et al., 2003], IntAct [Kerrien et al., 2007],
MPact [Guldener et al., 2006], MPPI [Mewes et al.,
2006], DOMINO [Ceol et al., 2007], Corum [Ruepp et al.,
2010], PDZBase [Beuming et al., 2005], and MINT [Chatr-
aryamontri et al., 2007]. The final interactome contained
173,500 unique scored protein-protein interactions derived
from 40,085 articles covering 13,000 proteins. All inter-
actions were scored and benchmarked against a gold
standard to ensure that we only used high-confidence
interactions in the analysis.
We retrieved records related to BD from the OMIM

database. The records describing major affective disorder
(bipolar disorder) cited more than 150 genetic studies of
the disease. In consensus, the major affective disorder
entries highlight seven genetic regions being particularly
important for the disease (Supplementary Table III).
Linkage peaks used in the T2D analysis where retrieved
from a recent review [Lillioja and Wilton, 2009] (Supple-
mentary Table X).
The GeneCards encyclopedia [Rebhan et al., 1998]

(http://www.genecards.org) is a comprehensive resource
for gene-related information. We mined this resource for
relationships between genes and BioAlma disease key-
words (download date 11/12/2009). All relationships were
extracted into a standardized format.
We downloaded the data from the BD gene expression

study [Ryan et al., 2006] via the Gene Expression Omnibus
database [Edgar et al., 2002]. The data set comprised two
separate sets of post-mortem samples: 61 samples from the
dorsolateral prefrontal cortex and 21 samples from the
orbitofrontal cortex. We pooled the two data sets to get
a total of 40 bipolar samples and 42 controls. The
T2D expression data sets were downloaded from the
Diabetes Genome Anatomy Project’s website (http://
www.diabetesgenome.org). The skeletal muscle data set
[Mootha et al., 2003] comprised 17 normal glucose tolerance
controls and 18 subjects with T2D. The pancreatic islet gene
expression data set [Gunton et al., 2005] comprised 7
normal glucose tolerance controls and 5 subjects with T2D.
Each data set had measurements of hybridization levels of
at least 22,283 probe sets.

CONSTRUCTION OF EVIDENCE LAYERS

The GWA-layers were constructed by calculating asso-
ciation P-values using Fisher’s test on a 2" 3 table
assuming an additive genetic model. If any cell had five
or fewer observations, we omitted that SNP. We mapped
each SNP to an Ensembl gene identifier using 70 kb base
pair upstream and 20 kb downstream flanking regions and
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the genes were scored by considering the most significant
associated SNP. Each gene score was then adjusted for
the effective number of independent SNPs in the given
gene by use of an approach described in [Galwey, 2009]
and implemented by us into a efficient C11 method
(available upon request). We used HapMap phase III
genotypes as input for that method. Finally, the GWA
evidence layers were created by ranking all genes based on
their adjusted score.
The candidate gene interaction layers were constructed

by counting the number of proteins each InWeb protein
interacted with, and how many of these proteins were
products of BD or T2D seed genes. Using a cumulative
hypergeometric distribution, we calculated the likelihood
of a protein interacting with that number or more seed
gene products given its number of interaction partners.
The evidence layer was produced by ranking all proteins
based on the significance of their interaction with the
known seed proteins.
The linkage layers were assembled by retrieving all

protein-coding Ensembl genes within each of the linkage
regions associated with BD or T2D. In a given linkage
region with LOD score l and k genes, all genes were
assigned a score equal to l/k. Hence, genes within a region
with relatively few genes and a high LOD score were
assigned a higher prior probability of being true disease
genes than genes within longer regions or regions with
lower LOD scores. If no LOD scores were available all
linkage regions we assigned a LOD score of one. Based on
these probabilities, we ranked the genome into the BD and
T2D specific linkage evidence layers.
The disease similarity layers were constructed by

counting the number of genes labeled with each BioAlma
keyword. For each keyword, we counted the number of
genes that both were associated with that keyword and
‘‘bipolar disorder’’ (in the T2D analysis ‘‘diabetes mellitus
non-insulin-dependent’’ or ‘‘diabetes mellitus’’). The sig-
nificance of the co-occurrence of a keyword with these
disease terms was calculated using a cumulative hyper-
geometric distribution. The phenotype association layers
were constructed by rank ordering all genes based on the
significance of co-occurrence between their associated
keywords and the BD and T2D disease terms.
The expression layers were assembled by normalizing

the original gene expression studies using the robust
multiarray average method [Irizarry et al., 2003] and
applying a Student’s t-test to calculate differential expres-
sion between cases and controls. Subsequently, we
mapped probe sets to Ensembl gene identifiers and
produced the evidence layers by ranking the genes based
on the differential expression levels.

INTEGRATION OF EVIDENCE LAYERS

Each evidence layer was produced by ranking all genes
based on their probability of being associated with the
studied phenotype given the data, i.e. ranking the
individual data sources after P-values in increasing order
and giving them rank scores equalling their rank divided
by the total number of genes in the specific experiment. If
genes were missing in specific layers they were added and
obtained a rank score equal to 1. Next, we combined the
GWA, candidate gene interaction, disease similarity,
linkage, gene expression layers into a single meta-rank
by multiplying each gene’s rank score from all five layers.

In algebraic terms the final gene score Sx is written as

Sx¼
Qj

i¼1 rank
i
x=ngenes, where Sx is gene x’s meta-rank score,

j is the number of evidence layers, rankx
i is the rank of gene

x in evidence layer i, and ngenes is the number of genes in
evidence layer i. We calculated permutation-based
P-values by comparing the observed meta-rank scores to
a distribution of 107 randomized meta-rank scores, thus
giving an estimate of the probability of achieving a given
score by chance alone. The randomized meta-rank
distribution was calculated by shuffling gene ranks in
each input layer and recording of the best score in the
subsequent meta-score calculation 107 times.

ENRICHMENT OF META-RANK TOP RESULTS
IN SKLAR ET AL. GWA STUDY

Sklar et al. [2008] performed a large GWA study of BD in
parallel to the WTCCC. All SNPs in their data set were
mapped to genes using 5,000 base pair flanking regions,
and the genes were ranked according to the most
significant associated SNP. We defined the list of candi-
dates as the 63 genes getting higher than expected
P-values in the integrative genome-wide rank. Using
Fisher’s method for combining P-values, we calculate the
combined significance of the most associated SNPs in the
candidate genes. We randomly generated 100,000 sets of 63
genes in order to estimate the likelihood of achieving the
combined P-value or better.

VISUALIZATION OF RESULTS

In order to visualize the proteins interacting with
candidates involved in molecular mechanisms theoreti-
cally related to BD, we constructed a first-order protein-
protein interaction network extending from all seed gene
products. Input proteins with more than 20 interaction
partners without interactions with other nodes in the
network were removed. The network was visualized using
Cytoscape [Cline et al., 2007] and colored according to
ranks from the evidence layers.

EXPERIMENTAL VALIDATION

We included two independent case-control cohorts: one
from Denmark and one from Norway. The sample
characteristics are shown in Table I. The Danish sample
(DK) included 421 unrelated BD patients. Of these 256
patients were recruited by the Danish Psychiatric Biobank
from the psychiatry departments in the Copenhagen area.

TABLE I. Characteristics of the two case-control samples

Controls Cases

Male Female Male Female

Danish n 572 577 184 237
sample Mean age 40 (711) 40 (712) 43 (714) 45 (714)

AFA 34 (713) 32 (713)
Norwegian n 104 124 101 118
sample Mean age 41 (710) 39 (710) 41 (713) 43 (713)

AFA 31 (712) 30 (711)

The table includes the number of subjects (n), the mean age at the
time of last assessment for each sample and the age at first
admission (AFA).
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All patients had been clinically diagnosed with BD
according to the ICD-10 disease classification system.
The rest of cases included 165 unrelated patients collected
in Denmark. All cases were diagnosed with SCAN [Wing
et al., 1998] interviews fulfilling a best estimate diagnosis
of bipolar affective disorder according to the ICD-10-DCR
[WHO, 1993] and the DSM-IV [American Psychiatric
Association, 1994] criteria for bipolar I disorder. The
healthy control group (n5 1,149) was recruited among
15,000 healthy blood donors from the Danish Blood Donor
Corps collected in the Copenhagen area in 2005. The donor
corps includes more than 5% of the Danish population that
donate blood on a voluntary and unpaid basis. Apparent
behavioural abnormality was an exclusion criterion. All
cases and controls were of Danish Caucasian origin. The
Norwegian sample (NO) included 219 unrelated patients
diagnosed with bipolar I disorder (127) or bipolar II
disorder (79), or bipolar NOS (13) according to DSM-IV
using structural clinical interviews for DSM-IV (SCID).
The 228 controls were randomly selected from statistical
records of persons from the Oslo area born in Norway and
underwent screening interviews. All cases and controls
were of Norwegian Caucasian origin. The Danish Scien-
tific Committees, the Danish Data Protection Agency, the
Norwegian Scientific-Ethical Committees and the Norwe-
gian Data Protection Agency approved the study. All
patients and controls have given written informed consent
prior to inclusion into the project.
We used data from the HapMap CEU population

website (www.hapmap.org; HapMap Data Rel 22/phaseII
Apr07) to identify tag SNPs that covered most of the
common variants within the YWHAH gene region (includ-
ing 3 kb upstream of the 50 end and 1kb downstream of the
30 end of the gene). Tag SNP selection was performed
using pair-wise tagging, with r2Z0.8 and minor allele
frequencyZ0.05. We identified 5 tag SNPs covering all 17
informative SNPs in the YWHAH gene with an average
r25 0.951. The selected SNPs were: (1) rs3761432 at the 50

end (tagging rs3827334 and rs933226); (2) rs929036 at the 50

end; (3) rs2267172 at the 50 end; (4) rs2858753 located in
intron 1 (tagging: rs3747158, rs4820059, rs2246704); and (5)
rs1049583 located in the 3’UTR (tagging: rs2301415,
rs7290696, rs8141011, rs7291050, rs2858750, rs2853884,
rs2853887). We extracted genomic DNA from whole blood
and analyzed the five tag SNPs using TaqMan genotyping
assays (Applied Biosystem, Lincoln, CA) following the
manufacturer’s instructions on an ABI7900HT system
(Applied Biosystem). The assay verifications were as
follows: (1) rs3761432 accuracy was 99.7% (21.1% rerun
of the samples) and a success rate of 99.3%; (2) rs929036
accuracy was 100% (7.2% rerun of the samples) and
success rate was 97.9%; (3) rs2267172 accuracy was 100%
(13.1% rerun of the samples) and success rate was 99.9%
(this SNP was only analyzed in the Danish sample); (4)
rs2858753 accuracy was 100% (8.1% rerun of the samples)
and a success rate of 99.6%; (5) rs1049583 accuracy was
99.5% (8.2% rerun of the samples) and success rate was
99.4%. All genotypes were tested for Hardy-Weinberg
equilibrium (Po0.01 was considered to be in Hardy-
Weinberg disequilibrium).
The linkage disequilibrium block structure was assessed

with Haploview 4.1 using the default setting for all
three samples and in the combined sample. One block
was identified between rs2858753 and rs1049583 (D’ on
0.98 and r2 on 0.53). Haplotypes between these two

markers were estimated in Haploview (Supplementary
Tables VI–VIII).
Pearson’s chi-square tests were used to compare

genotype distributions using the computer software SPSS
version 15 (data not shown). We adjusted all P-values for
multiple testing using Bonferroni correction. Allele fre-
quencies and haplotypes were analyzed using Haploview,
and all P-values for allele frequencies and haplotypes were
adjusted for multiple testing using the permutation test
(100,000 estimates) in Haploview. Odds ratios were
calculated using ‘‘Calculator for confidence intervals of
odds ratio in an unmatched case control study’’ (http://
www.hutchon.net/ConfidOR.htm). A recent report found
no population stratification between our two Scandinavian
subsamples [Kahler et al., 2009].

COMPARISON WITH CANDID

The web server tool CANDID (https://dsgweb.wustl.
edu/hutz/candid.html) was used for benchmarking
(CANDID database version 6 from March 2010). For the
BD comparison we specified the same BD-specific key-
words for the CANDID literature layer as we used for
finding the seed genes for our analysis (bipolar disorder,
monoamines, stress response, neurodevelopment, lithium
treatment, neuronal signaling, circadian control). For the
expression layer we selected whole brain as tissue (code 29).
For the association layer we used the same GWA results as
used in our approach. For the linkage layer we uploaded all
genes from the same linkage regions as used in our
approach. We included both the domain and conservation
layer in the final CANDID analysis and all layers were
weighted equally.
For the T2D comparison keywords selected for the literature

layer were: T2D, insulin resistance, insulin deficiency, and beta
cell failure. We used skeletal muscle, pancreas, pancreatic
islets, and liver (codes 75, 57, and 45, respectively) as tissue
codes. For the linkage layer we uploaded all genes from the
same linkage regions as used in our T2D analysis. Again we
included both the domain and conservation layer in the final
CANDID analysis and all layers were weighted equally. We
compared the CANDID results to our T2D analysis in which
we used the skeletal muscle expression data set as the
differential gene expression layer.

RESULTS

We evaluated our approach by applying it to BD, a
psychiatric disease for which a recent GWA meta-analysis
[Ferreira et al., 2008] covering 10,500 subjects reported two
disease loci that reached genome-wide significance. In
addition we have applied the method to T2D, which has a
higher prevalence than BD and to date has approximately 37
significant common variant associations [Voight et al., 2010].
The evidence layers for BD were constructed from five

different disease-specific data sources: GWA data, known
bipolar candidate genes, linkage regions associated with
BD, known susceptibility genes from diseases similar to
BD, and gene expression data from post-mortem brain
samples of bipolar patients. From the WTCCC website, we
downloaded summary statistics of genotypes from 1,868
bipolar and 14,311 combined controls [Wellcome Trust Case
Control Consortium, 2007]. We selected a set of well-
established genes from each of the known BD suscept-
ibility pathways, which resulted in a list of 34 seed genes
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(Methods and Supplementary Table I). In order to score all
proteins according to the likelihood that they interacted
with any of the seed genes, we used an updated version of
the previously introduced InWeb [Lage et al., 2007a]
protein-protein interaction network, comprising 173,500
physical interactions between 13,000 human proteins.
From OMIM [Hamosh et al., 2002] we retrieved seven
cytogenetic bands associated with BD. We mined the
GeneCards resource for 3,785 BioAlma disease terms
which mapped to a total of 13,891 genes in order to
identify genes co-occurring with diseases similar to BD.
Finally, we retrieved a gene expression data set with 82
samples from post-mortem brains of which 40 were
bipolar patients and 42 were controls [Ryan et al., 2006].

CONSTRUCTION OF EVIDENCE LAYERS
FOR BIPOLAR DISORDER

GWA layer. The summary statistics from the
WTCCC study of BD included 459,293 SNPs. These SNPs
were mapped to 20,049 protein-coding genes. Each gene
was scored based on the SNP with the lowest P-value
within the most extreme gene transcript including 70 kb
upstream and 20 kb downstream flanks. Afterwards each
gene score was adjusted for the number of independent
SNPs mapped to it (Methods) and all genes were ranked
according to their adjusted scores.

Candidate gene interaction layer. We ranked each
protein in the InWeb interactome based on its hypergeo-
metric enrichment of known seed gene products in its
first-order protein interaction neighborhood. The proteins
most significantly enriched for interactions with the BD
seed gene products were corticotropin releasing hormone
(CRH), urocortin precursor (UCN), and the aromatic-L-
amino-acid decarboxylase (DDC).

Linkage layer. OMIM associates the linkage regions
2q22-q24, 6q23-q24, 16p12, 18p, 21q22.13, 22q12, and Xq28
to major affective disorders including BD. These regions
span 946 genes resulting in an average of 135 genes in each
region (see details in Supplementary Table III). We ranked
all genes based on their occurrence in, and size of, the
linkage regions.

Disease similarity layer. Within the GeneCards
respository 46 genes were labeled with the ‘‘bipolar
disorder’’ term. Out of 3,875 BioAlma terms, 164 terms
co-occurred at least once with ‘‘bipolar disorder.’’ The
most significantly co-occurring disease terms were schizo-
phrenia, mood disorders, and involutional depression (for
details see Supplementary Table II). In total, we ranked
7,555 genes which were associated with 164 disease terms
co-occurring with ‘‘bipolar disorder.’’

Differential gene expression layer. Differential
expression was calculated based on normalized expression
of 22,283 probe sets in the gene expression study by Ryan
et al. [2006] and used to rank a total of 13,068 genes.

INTEGRATION OF EVIDENCE LAYERS
FOR BIPOLAR DISORDER

We combined the ranks from each of the five evidence
layers to produce a meta-rank that could be used to
prioritize candidates for BD. An overview of the evidence
may be obtained using the protein-protein interaction
network created using the 34 seed genes for BD. Figure 2A
shows the 20 best candidates from the integrative

approach, whereas Figure 2B depicts the structure of
the protein-protein interaction network comprising 247
proteins and 291 interactions. Note that the protein
interaction network is used here only as a scaffold for
visualization of the joint significance of the genes across
all ranks. The interaction data enters the ranking as
phenotype association evidence on an equal footing with
all other data types.
The most significant new candidate that had the best

support across all five evidence layers was YWHAH
(permutation P5 0.04). Figure 3 summarizes the data
supporting the rank of YWHAH in each layer. Figure 3A
shows the slightly skewed allele distribution of the
rs6518758 SNP, which was not found in the original
GWA study since it was nonsignificant after correction for
multiple testing (unadjusted P5 0.05). The protein
YWHAH interacts with tryptophan hydroxylase 1
(TPH1), which is the rate-limiting step in the serotonin
biosynthesis [Ichimura et al., 1995; Serretti et al., 2001] and
with the glucocorticoid receptor (NR3C1), which has been
associated to major depression and BD [Kim et al., 2005;
Spiliotaki et al., 2006; Wakui et al., 1997] (Fig. 3B). The
YWHAH gene is located in the cytogenetic band 22q12.3
that was associated to BD [Kelsoe et al., 2001]. This is the
most gene rich region of the seven cytogenetic bands that
have been linked to BD (Fig. 3C). YWHAH has previously
been associated to schizophrenia, but these studies did not
investigate the association in bipolar patients [Bell et al.,
2000; Toyooka et al., 1999]. Schizophrenia is the disease term
that most significantly co-occurs with ‘‘bipolar disorder’’
in the phenotype association evidence layer (Fig. 3D).
Figure 3E shows a histogram of the expression levels of
YWHAH mRNA for bipolar patients and controls.
YWHAH is among the 5% most significantly differentially
expressed genes and clearly tends to have lower expres-
sion in bipolar patients.
Interestingly, a validating observation of the meta-rank

(Fig. 2A) shows that SNPs in the top-scoring genes tend
to be more significantly associated to BD than randomly
selected genes in an independent BD GWA study [Sklar
et al., 2008] (P5 0.055).

EXPERIMENTAL VALIDATION OF BIPOLAR
DISORDER GENE

To investigate the association of variants within
YWHAH to BD, we genotyped six markers in one Danish
and one Norwegian sample in a total of 640 BD patients
and 1,377 controls. Table I characterizes the studied
individuals. We selected five tag SNPs covering the
YWHAH gene region (3 kb 50 and 1 kb 30 of the gene
region, respectively). The genotype distributions were in
Hardy-Weinberg equilibrium among controls both within
each cohort, and in the combined sample.
Table II summarizes the allele distributions of the five

selected SNPs in each of the two case-control samples. We
found significant differences in minor allele frequencies
between cases and controls for the marker rs1049583 in
both samples and in the combined sample (P5 5.0e!4)
with an odds ratio of 1.29 [1.12–1.48] (adjusted for multiple
testing using Bonferroni correction, P5 5.6e!3).
We analyzed the markers for haplotypes using the

Haploview software (with default settings) and identified
two haplotype blocks, one between rs3761432 and rs929036,
and one between marker rs2858753 and rs1049583 (block

323Meta-Analysis of Heterogeneous Data Sources

Genet. Epidemiol.



two). The CG haplotype in first block was associated with
BD in the Norwegian sample (adjusted P5 0.018), but this
was not confirmed in the Danish sample (Supplementary
Table VI). The haplotype between the two minor alleles,
GA, in the latter block was significantly associated with BD
in both samples and in the combined sample (adjusted
P5 0.0059) (Supplementary Table VI).

INTEGRATION OF EVIDENCE LAYERS FOR T2D

We repeated the analysis for T2D, a complex heterogenic
disease that is based on a complex interplay between both
rare and common variants, which when exposed to certain
environmental factors cause T2D. To construct a GWA-
based evidence layer, we used genotype data from the
WTCCC T2D study. The candidate gene interaction layer
was again based on the InWeb protein-interaction database
now using a recently published list of 42 T2D suscept-
ibility genes seeding the analysis [Doria et al., 2008]. This
seeding gene set contained both monogenic and common
T2D susceptibility genes (Supplementary Table IX). To
assess the sensitivity and impact of the seed genes on the
final gene rank, we also used a list of 20 genes at or nearby
loci detected in recent T2D GWA studies (Supplementary
Table IX) [Florez, 2008]. The linkage evidence layer was
constructed from 18 T2D linkage regions reported in at
least 10 linkage reports as well as their LOD scores as

included in a recent review (Supplementary Table X)
[Lillioja and Wilton, 2009]. Genes within linkage intervals
were both weighted based on the number of genes within
the given interval and the LOD score for that interval. The
disease similarity layer was constructed by mining
GeneCards for all BioAlma terms co-occurring with
‘‘diabetes mellitus’’ or ‘‘diabetes mellitus non-insulin-
dependent.’’ The most highly co-occurring terms were
‘‘diabetes mellitus insulin-dependent,’’ ‘‘insulin resistance,’’
and ‘‘insulin sensitivity’’ (Supplementary Table XI).
Finally, the gene expression layer was build using a highly
cited skeletal muscle expression study carried out in T2D
subjects and healthy controls [Mootha et al., 2003].
After constructing the five T2D evidence layers and

collapsing all genome ranks into a single meta-rank, we
identified solute carrier family 2 member 4 (SLC2A4), as
the top-ranking gene (Supplementary Table XII). It was
followed by glycogen synthase 1 (GYS1) the and transcrip-
tion factor 7 like 2 (TCF7L2) genes, the latter being
expected as the TCF7L2 gene was discovered in the
GWA study used in our analysis and among the seed
genes for the candidate gene interaction layer.
In order to assess the robustness of the meta-rank in

relation to changes in the individual seed data sets we
repeated the analysis several times changing the different
data sets in the individual evidence layers. First, we
seeded the candidate gene evidence layer with the

Fig. 2. Integration of genome-wide association data, candidate gene interaction, linkage intervals, disease similarity, and differential
gene expression data for bipolar disorder. (A) List of the top 20 candidates for bipolar disorder. The matrix shows the contribution from
the individual layers of evidence. Permutation based P-values are noted in parentheses. (B) Protein-protein interaction network based
on seed genes for bipolar disorder visualizing the meta-rank. The color scheme goes from strong evidence of association (red) to no
evidence of association (light gray).
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GWA-based list of just 20 genes extracted from a review by
Florez [Florez, 2008] and found that GYS1, TCF7L2, and
SLC2A4 again were the highest ranking genes. Second, we
exchanged the expression data with a highly cited
pancreatic islets data set [Gunton et al., 2005]. In the
analysis based on the Doria et al. seed gene set, the insulin
receptor gene (INSR), TCFL2, and the hepatocyte nuclear
factor 4 alpha (HNF4A) were the highest ranking genes.
Reassuringly, in the analysis based on the Florez seed gene
set, these genes also ranked among the top genes (ranks 2,
1 and 5, respectively), demonstrating that the top findings
are indeed robust across a number of data sets.

COMPARISON WITH AN INDEPENDENT T2D
GWA STUDY

In order to justify that an integrated approach yields
more robust results and novelty compared to other
modestly powered GWA studies, we compared the final
rank of our meta-analysis to the results from the Diabetes
Genetics Initiative GWA for T2D [Saxena et al., 2007].
As shown in Figure 4A, we found that for all thresholds our
method had considerably superior performance in finding
known T2D susceptibility genes (for benchmark set
construction see Methods) than the gene rank produced
solely by the original Diabetes Genetics Initiative GWA
study. Note that when disabling the phenotype-similarity
layer our integrative method exclusively relies on experi-
mental evidence layers, and does not include text mining to
rediscover known genes. The analysis again shows that the
diversity of data types is useful, as compared to applying
just a single evidence type.

COMPARISON WITH THE CANDID GENE-
PRIORITIZATION METHOD

Gene prioritization methods are difficult to compare
and benchmark as they often use widely different types of
information to seed the analysis. As described above,
another problem is that many methods using GWA data
work from a limited, predefined set of pathways or
interaction networks, thus not extending the search for
novel disease genes to the entire protein-coding genome as
in the method described in this paper. Availability of
methods is another serious constraint.
One of the most generally available and user friendly

method is the Endeavour gene-prioritization software tool
[Aerts et al., 2006], which can be seeded by a user-selected
gene set as in our method, but it does not incorporate
GWA data. To our knowledge the only genome-wide gene
prioritization method, which allows researchers to upload
their GWA data to a publicly available software tool is
CANDID—an integrative method that uses genetic data
sources along with text mining of PubMed abstracts
[Hutz et al., 2008]. For benchmarking, we collected 186
BD-susceptibility genes from a very recent review [Luykx
et al., 2010] and used the HuGE Navigator [Yu et al., 2008]
to extract 86 T2D susceptibility genes that have at least
been associated with T2D in 10 independent publications
(Supplementary Table XIII). Based on these genes we
constructed two benchmark gene sets used as gold
standards in the comparison (genes used to seed our
analyses were excluded). In the case of BD, where we
undertook genotyping of a high ranking gene, the 34 seed
genes were selected around 2 years prior to the publication

Fig. 3. Summary of the evidence indicating involvement of
YWHAH in bipolar disorder. (A) Distribution of genotypes of
the SNP rs9609396 in bipolar and normal subjects. (B) The local
protein-protein interaction network around YWHAH. Proteins
are color-coded according to their position in the meta-rank. (C)
The number of genes in each linkage region associated with
bipolar disorder. YWHAH is located in the cytogenetic band
22q12.3. (D) The disease terms most significantly co-occurring
with bipolar disorder. (E) Expression of the YWHAH gene in
post-mortem brain samples of bipolar and normal subjects.
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of the above mentioned review. As can be seen on
Figure 4B and C our method was for both BD and
T2D able to detect a considerably larger proportion of
benchmark genes (see Methods for additional benchmark
details).

DISCUSSION

In this paper, we present a systems biology approach to
integrate heterogeneous data sources ranging from prior
knowledge of the molecular disease models, high-through-
put expression data to disease-related protein complexes.
The different data sources represent evidence layers
symmetrically, providing a prioritization of the genome
that enables informed selection of candidates for thorough
subsequent genotyping. The in-depth experimental repli-
cation of one BD risk gene confirms the feasibility of
conducting such integrative meta-analyses, thus adding

value to the data produced in the numerous GWA studies
completed so far.
Our approach has the advantage that it, in contrast to

GWA studies, points directly to risk genes, and places
them in a functional context hinting at the molecular
etiology of the phenotype in question. (Please refer to
Supplementary Note 6 for a discussion on YWHAH’s
putative role in BD.) Androgen and estrogen receptors
have YWHAH binding motifs [Zilliacus et al., 2001]
providing encouraging in-depth analysis of gender speci-
ficity of the association between the gene and BD. We
therefore also analyzed the gender-specific samples
independently and found that in males the allelic associa-
tion for both rs2858753 and rs1049583 were highly
significant (adjusted P5 0.0027 and P5 3.0e!5) (Supple-
mentary Tables IV and V) with an OR of 1.44 and 1.63,
respectively. These findings indicate that the alleles of
YWHAH associated with BD might be interacting with
alleles of steroid hormone receptors. Our findings are
further supported by a recent study carried out in parallel

Fig. 4. Overview of comparison between the number of benchmark genes recapitulated by our MetaRanker method (red curves), the
DGI GWA study (blue curve in panel A), and the CANDID method (blue curves in panels B and C). The plot in panel (A) shows that
MetaRanker predicts more correct benchmark genes compared to a prediction solely based on the DGI GWA study, also when the
phenotype similarity layer is left out (orange curve). The number of BD (B) and T2D (C) benchmark genes recapitulated among the top
hits returned by MetaRanker and CANDID illustrate how our method increasingly identifies more benchmark genes than CANDID.
The black curves reflect the overlap of correctly predicted genes between the different approaches.

TABLE II. Summary of five tag SNPs in the YWHAH gene in two Scandinavian samples

Danish sample Norwegian sample Combined sample

SNP
Allele

minor/major
MAF case
control

P
(P!)

OR
95% CI

MAF case
control

P
(P!)

OR
95% CI

MAF case
control

P
(P!)

OR
95% CI

rs3761432 C/T 18.9 NS ND 23.8 0.002 1.70 20.6 0.023 1.21
18.0 (NS) 15.6 (0.011) (1.21–2.38) 17.6 (NS) (1.02–1.43)

rs929036 G/A 40.8 NS ND 40.6 NS ND 40.8 0.054 0.87
44.6 41.2 44.0 (NS) (0.76–1.00)

rs2267172 C/G 5.6 NS ND ND
6.2 ND

rs2858753 G/C 45.9 0.043 1.18 48.6 NS ND 46.8 0.009 1.19
41.9 (NS) (1.01–1.38) 45.4 42.4 (NS) (1.05–1.37)

rs1049583 A/G 34.5 0.028 1.21 38.4 0.0088 1.45 35.9 0.0005 1.28
30.4 (NS) (1.02–1.43) 30.0 (0.043) (1.10–1.91) 30.3 (0.0056) (1.12–1.48)

MAF, minor allele frequency; P, P-value; OR, odd ratio; CI, confidence interval; NS, non significant; ND, not done.
!P-value corrected with 100,000 permutations using Haploview 4.1.
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with our work, which also showed an association between
BD and a YWHAH variant located 3,7 kb upstream of our
rs1049583 association [Grover et al., 2009].
In the T2D analysis we identified the ectonucleotide

pyrophosphatase/phosphodiesterase 1 (ENPP1) gene as
one of the putative T2D susceptibility genes. The gene
product of ENPP1 is a candidate gene in insulin resistance
[Maddux et al., 1995], but has not been identified in T2D
GWA studies so far, possibly due to the genetic hetero-
geneity of T2D [Prudente et al., 2009]. Notably, in our
analysis ENPP1 received support from four of our five
evidence layers: In the GWA-based layer the gene was
located above the 94.4 percentile within gene rank
distribution having a SNP-count and linkage disequili-
brium adjusted P-value of 0.05; in the candidate gene
interaction layer it ranked above the 99.8 percentile since
its only interacting protein was the gene product of the
known T2D susceptibility gene INSR; in the phenotype
similarity layer it ranked above the 99.9 percentile as it has
previously been annotated to insulin resistance, which is
closely related to T2D measured in terms of co-occurring
BioAlma disease terms; and finally, in the linkage layer it
was located above the 99.7 percentile as it is located within
a T2D linkage region replicated through 10 independent
studies. Our finding of ENPP1 indicates that even for a
common complex disease like T2D, simultaneous and
symmetric consideration of several different disease-
related evidence layers may uncover promising findings
left unidentified by GWA meta-analysis.
The approach presented here has strengths, but also

disease-specific limitations. The data available for integra-
tion depends strongly on the disease in question, as does
their quality and relevance. This arbitrariness leaves it up
to the user to find the optimal combination. There is no
guaranty that the benchmarks presented above will
generalize to other diseases. In the ideal case the
integration would be based on well-powered GWA study
data, a tissue-specific SNP to gene mapping originating
from tissue-specific expression quantitative trait loci data,
high-confidence candidate gene interaction layer seed
genes, differential expression data from a meta-analysis
of relevant expression studies, copy-number aberrations,
and rare variant data. The complementarities between
these data are obviously also disease specific.
Currently, most GWA studies are carried out strictly

within specific disease categories. The method we have
presented here exploits evidence from overlapping pheno-
types which can be used to improve the identification of
important candidate genes. YWHAH alleles have been
previously been associated to schizophrenia, and we show
that one SNP in the gene has strong associations to BD in
two independent samples. A recent gene expression study
showed that YWHAH is differentially expressed in post-
mortem brains of patients with major depression as well
[Kang et al., 2007]. In combination, this should encourage a
more dynamic view of disease definitions that would
permit overlapping phenotypic traits to have common
genetic origins in the relatively gene-poor human genome.
Additionally, our genome-wide prioritization of bipolar
candidates allows targeted analysis of SNPs in functionally
relevant regions of high-scoring genes that are not included
on commercial arrays and therefore are missed in most
recent GWA studies of BD.
In conclusion, we have performed an integrative

meta-analysis of highly different and heterogeneous

molecular-level sources of information to identify and
rank disease genes according to their likely phenotypic
relationships. In the online-available version of the method
users can upload GWA study P-values, known suscept-
ibility genes, linkage regions, differential expression P-
values, and keywords for their disease or risk-phenotype
(www.cbs.dtu.dk/services/metaranker). In this study we
have shown that our method enriches subsequent experi-
mental validation in, for instance, GWA studies for likely
disease susceptibility genes by producing a small shortlist
of promising candidates. This type of approach seems to
be well suited to complex diseases harboring multiple
individual susceptibility alleles with low effect sizes since
it interrogates both information on common associations
and information on rare gene-disease associations simul-
taneously. Thus, it is likely to identify additional suscept-
ibility genes in situations where no single data type is
likely to reveal the complete picture.
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4Integrative analyses of
genetic variation in obesity

Part of my doctoral research was focused on the analysis of genetic variation in obesity.
In the following chapter, I will briefly outline findings fromGWAstudies on obesity risk
phenotypes, preliminary findings from a sequence-based analysis of the FTO gene, and
results from integrative analyses of genetic variation in body-mass index.

. Common genetic variation in obesity

Obesity is adding substantially tomorbidity andmortality due to adverse consequences
on human health [Kopelman, ]. In  the prevalence of obesity, the weight
in kilograms divided by the square of the height in meters above , is predicted to
be . for westernized countries and . world-wide [Kelly et al., ]. e
obesity epidemic is, among other factors, driven by a change in our near environment
(as e.g. increased availability of energy dense, palatable and inexpensive food), but in-
dividuals respond differently, as genetic variation determines how susceptible a given
person is towards becoming obese. Some obesity statistics have reported that the pre-
valence of obesity in the USA have stabilized during the last decade [Yanovski and
Yanovski, ]. is observation would indicate that susceptible individuals already
have become obese, while the resistant individuals stay lean despite the 'obesogenic'
environment. However, a general trend for all westernized societies is that those who
are susceptible are steadily becoming more obese and a growing fraction is becoming
morbidly obese (body-mass index >) [Yanovski andYanovski, ]. Genetic factors
have been estimated to account for -of the population variation in obesity [Speli-
otes et al., ], and hence a major factor in the susceptibility landscape of obesity.

Prior to GWA studies, candidate gene approaches and linkage studies have iden-
tified several genes (among others leptin gene, LEP, the leptin receptor, LEPR, pro-
opiomelanocortin, POMC, and themelanocortin  receptor, MCR) that segregated in
Mendelian patterns and led to extreme forms of overweight [McCarthy, ]. In ,
gene variants in the FTO gene were the first common SNPs to be associated with body-
mass index [Frayling et al., ,Scott et al., ,Dina et al., ] (as described in the
next section). Since then, GWAanalyses of body-mass index [Willer et al., b,or-
leifsson et al., , Speliotes et al., ] and obesity-related risk-phenotypes such as
waist circumference [Lindgren et al., ], waist-hip circumference [Lindgren et al.,
,Heid et al., ], weight [Johansson et al., ] and early onset obesity [Meyre
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et al., ] have identified > independent susceptibility loci for obesity-related risk
phenotypes.

Even though recent GWA meta-analysis findings have provided some evidence to
the hypothesis that risk of being obese is increased by deregulation of central energy
expenditure regulating pathways in the hypothalamus [Fawcett and Barroso, ], the
specific biological pathways causal to obesity remain obscure. A recent meta-analysis
for fat distribution showed that genetic variation within genes expressed in adipose
tissue contribute to common forms of obesity [Heid et al., ], showing that path-
ways related to fatty acidmetabolismmay play important roles in obesity. For instance,
excess storage of triglycerides in fat cells and these cells' inertia may cause metabolic
dysfunction [Sørensen et al., ].

Despite the relative large number of novel obesity-associated loci, the known asso-
ciations account for < percent of the genetic variation in obesity-related risk phen-
otypes. e large fraction of unaccounted genetic variability in current studies indic-
ates that common variants do not provide the complete picture of the susceptibility
landscape in obesity. Consequently, research focus has turned towards complement-
ary analyses techniques, such as systematic investigations of copy number variations'
impact on body-mass index [Walters et al., ] and role in early onset obesity [Bo-
chukova et al., ], and integrative systems biology analyses that integrate a variety of
relevant evidence sources. e copy number variation studies found large de-novo re-
arrangements at p., a region comprising several genes including a gene (SHB)
that has also has been identified in GWA studies. However, both authors concluded
that the contribution of copy number variations to obesity is relatively low. In sum-
mary, despite large-collaborative efforts and systematic analysis of the role of common
variation in obesity, the percent variability explained remains low, compared to estim-
ates of the heritability of obesity.

Before I return to the role of integrative approaches for the analyses of genetic vari-
ation in obesity (Section .), I will summarize the analyses of the FTO gene that my
co-workers and I did during the first year of my doctoral studies.

. Studies on the biology of the FTO gene

In  several GWA studies reported strong associations between variants in the FTO
(fat mass and obesity associated) gene and body-mass index [Dina et al., ,Frayling
et al., , Scuteri et al., ]. Shortly hereaer, we reported an association between
the FTO risk allele rs and an obesity-independent increase in all cause mortal-
ity [Zimmermann et al., ], a finding that further encouraged us to analyze genetic
variation in the FTO gene. e increase in all cause mortality seemed to resemble
other findings from mouse studies, namely that loss-of-function mutations in mouse
Fto causes autosomal-recessive lethality [Boissel et al., ]. FTO was originally dis-
covered in mouse mutants, where homozygosity of a .-Mb deletion comprising at
least six genes including Fto and Ftm (RPGRIPL), led to loss of genetic control of
le-right symmetry in the brain, defects in brain morphogensis and to death early in
development [van der Hoeven et al., ].

Now, almost  years aer the FTO associations were discovered, association stud-
ies have shown that variants in FTO may lead to increased energy intake and reduced
satiety [Tung and Yeo, ]. As associations themselves do not give any mechan-
istic insights, various research groups have conducted bioinformatics- and in vitro bio-

e rs variant is still the FTO SNP that exhibits the strongest association to obesity.





chemical analyses on the FTO gene and its protein sequence. ese analyses suggest
that the FTO gene product functions as a -oxoglutarate dependent demethylase or
dioxygenase [Gerken et al., ,Sanchez-Pulido and Andrade-Navarro, ]. In ad-
dition, mousemodels provided evidence that the Fto gene and not the neighboring Ftm
(homolog of the human RPGRIPL gene) associates with obesity, as FTO loss of func-
tion [Fischer et al., ] and partial loss-of-function [Church et al., ] result in re-
duced fat mass and increased energy expenditure inmice. In addition, over-expression
of Fto has been shown to cause obesity [Church et al., ] in mice.

ese interesting pleiotropic effects of the FTO locus inspired us to look deeper
into the putative cellular mechanisms linking the sequence variation to obesity and
possibly increased all cause mortality. As the FTO-risk alleles are located within a 
kb haplotype block in the first FTO intron (and  kb promoter region of the reverse
strand RPGRIPL gene), and introns are known to harbor regulatory control elements,
such as small nucleolar RNAs, miRNAs [Cheng et al., ] and other intronic non-
coding RNAs [Ashe et al., , Mattick, ], we hypothesized that the FTO risk-
alleles influenced the function of an unknown non-coding RNA putatively regulating
FTO and/or RPGRIPL expression. Examples on sequence variants disrupting non-
coding RNAs are rare, but may have profound effects [Iwai and Naraba, ].

Bioinformatics sequence-based analysis of the FTO locus
First, we scanned all SNPs in linkage disequilibrium (r2>.) with the rs
reported in Frayling et al [Frayling et al., ], and Zimmermann et al. [Zimmer-
mann et al., ] for overlap with predicted functional non-coding RNAs based on
genome-wide predictions from the Evofold [Pedersen et al., ] and RNAz predic-
tion tools [Washietl et al., b,Washietl et al., a]. Based on the genome-wide
RNAz screen (assessing only predictions with a probability > ., yielding a sensitivity
of  and specificity of ), we identified a SNP rs with high linkage dis-
equilibrium with the rs (r2 = .), which overlapped with a non-coding RNA
prediction (Fig. .).

Interestingly, the SNP was one of the four most significantly associated SNPs sug-
gested in the work by Dina et al [Dina et al., ] and located within one of the most
highly conserved regions of the human genome, being conserved in several vertebrates
including chicken (Fig. .). Highly conserved non-coding regions of the genome are
known to be strongly enriched for non-coding RNAs [Siepel et al., ].

e candidate RNA had a predicted length of  bps, but the actual length of the
putative non-coding RNA could extend the predicted size, since only a small part of it
may have been detected in the sliding window approach employed by the prediction
algorithm. We used the RNAfold and RNAalifold tools to predict the structure of the
candidate RNA based on its sequence (Fig. .a), and based on the multiple align-
ment of  vertebrate species (Fig. .b). e structure predictions resembled each
other, which confirmed the original RNAz algorithm finding that the candidate RNA
sequence is able to fold into a stable secondary structure.

To assess how the risk allele affected the secondary structure of the candidate RNA
(as measured by the change in minimum free energy) we again used the RNAfold
and RNAalifold RNA structure predictions tools to calculate the minimum free energy
based on the human sequence and an alignment of the candidate RNA sequence in 

 Asli Silahtaroglu, Claus Hansen and Niels Tommerup from the University of Copenhagen, my super-
visors, and me.

http://rna.tbi.univie.ac.at
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Figure .: Overview of the FTO and RPGRIPL region. Panel (a) shows the SNPs
within the FTO intron  haplotype block that associates with body-mass index. Panel
(b) gives amore detailed overview of the SNPswithin and in close proximity to the can-
didate RNA. e Ensembl Genome Browser (www.ensembl.org) was used to generate
genomic parts of the figure. Abbreviations: Chr, chromosome; LD, linkage disequilib-
rium; ncRNA, non-coding RNA.

vertebrate sequences. We found that the risk allele decreased minimum free energy
of the candidate RNA structure based on the multiple alignment, and that the change
in minimum free energy was largest for the structure folded from the sequence of the
forward strand (Tab. .).

We identified six compensatory double substitutions and several single compatible
substitutions in the stem harboring the rs polymorphism, which increased our
confidence in the prediction. e candidate non-coding RNA is located in the latter
part of the first FTO intron and in the promoter on the antisense RPGRIPL gene (kb
upstream from theRPGRIPL transcription start site, Ensembl genomebrowser). Cap
analysis of gene expression in humans and mouse suggests that the candidate RNA is
included in RPGRIPL transcripts expressed in cecum and cerebrum [Kawaji et al.,
]. In addition, the genomic region between RPGRIPL and FTO harbors a CpG
island and may function as a bi-directional promoter [Engström et al., ].

Expression analysis of the FTO locus

To assess whether the candidate RNA was expressed, and possibly co-expressed with
the FTO and RPGRIPL gene, we collaborated with experimentalists from the Tom-
merup Laboratory from the University of Copenhagen.

www.ensembl.org
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Figure .: Alignment of candidate RNA sequence in  vertebrate species. Abbrevi-
ations: SS anno, secondary structure annotation. Species abbreviations:
echTel, Echinops telfairi, Lesser Hedgehog Tenrec
bostau, Bos taurus, Domestic Cow
panTro, Pan troglodytes, Common Chimpanzee
canFam, Canis familiaris, Domestic Dog
rheMac, Macaca mulatta, Rhesus Macaque
oryCun, Oryctolagus cuniculus, European Rabbit
dasNov, Dasypus novemcinctus, Nine-Banded Armadillo
mm, Mus musculus, House Mouse
loxAfr, Loxodonta africana, African bush elephant
rn, Rattus norvegicus, brown rat
MonDom Monodelphis domestica, opossum
galGal, Gallus gallus, chicken

Quantitative real time polymerase chain reaction (qPCR) expression analysis of the
candidate RNA, FTO and RPGRIPL showed that these three genes were co-expressed
across all tissues (temporal lobe, parietal lobe, occipital lobe, frontal lobe, dienceph-
alon, cerebellum right, and cerebellum le) in our human brain cDNA panel (Fig.
.a). However, the average crossing point values (Ct values) indicated that the ex-
pression of the candidate RNA was low, with average Ct values above  (average
.±.). Expression levels of FTO and RPGRIPL were much higher with average

In qPCR analysis the Ct value denotes the number of cycles needed to detect a expression signal that
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Figure .: e predicted structure of the candidate RNA based on its sequence (a)
and based on a multiple alignment of  vertebrates (b). e colors denote positional
entropy, where dark red denotes basepairing characterized by low entropy, i.e. strong
binding.

Ct values of .±. and .±., respectively. Based on the difference in Ct value
averages between the candidate RNA, FTO, and RPGRIPL, we estimated that FTO
and RPGRIPL were > fold more abundant in the brain tissues than the candidate
RNA.

Expression analysis on a larger human cDNA panel revealed that the candidate
RNA was expressed at detectable levels in a majority of the tissue samples (Fig. .b).
Among the brain tissues, the expression of the candidate RNAandFTOandRPGRIPL
was largest in the total brain sample. Major expression peaks of non-neural origin
included fetal liver, heart, skeletal muscle, and colon. e average expression levels
of the candidate RNA were low judged on Ct values (average .±.). For FTO and
RPGRIPL, average Ct levels were consistently higher compared to the candidate RNA,
averaging .±. (FTO) and .±. (RPGRIPL). is indicated that these genes
were approximately  fold more abundant than the candidate RNA transcript in these
tissues.

To determine where the candidate non-coding RNA localized in the brain and
which strand it is expressed from, Dr. Silahtaroglu performed in situ hybridizations

exceeds the background level, i.e. there is a negative correlation between Ct levels and target nucleic acid in
the sample.
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Minimum Free Energy

rs
major allele

rs
risk allele

Human sequence minimum free energy

Forward strand, kcal/mol -. -.

Reverse strand, kcal/mol -. -.

Multiple alignment minimum free energy

Forward strand, kcal/mol -. -.

Reverse strand, kcal/mol -. -.

Table .: Based on the structure prediction of the human candidate RNA sequence,
the minimum free energy of the structure with the rs major allele had a lar-
ger minimum free energy than the predicted minimum free energy from the candidate
RNA sequence containing the risk allele. However, structure prediction based on the
multiple alignment of  vertebrate species resulted in stronger structure (lower min-
imum free energy) for the risk allele sequence. For both the human sequence and the
multiple alignment the structure prediction based on the forward strand resulted in a
slightly stronger structure. Abbreviations: kcal, kilo calories.

on frozen adult mouse brain sections. Two sets of probes were placed within the can-
didate RNAwhere one pair included the rs polymorphism. One set was placed
outside the candidate RNA region (Supplementary Figures  and  pp. -). e
in situ hybridization using the probes within the candidate RNA showed expression
signal from both strands, with the strongest signal coming from the forward strand.

Concluding Remarks

Even though our preliminary findings are interesting, as nomechanisms has been iden-
tified yet, they are challenging, too. Further work is needed to verify that the expression
of the candidate RNA is not caused by non-functional intron sequences.

Similar to previous expression studies [Gerken et al., ,Frayling et al., ], we
found that expression levels of FTO and RPGRIPL is relatively high in various brain
tissues. e candidate RNA seemed to be co-expressed with these genes, even though
absolute expression levels of the candidate RNA are relatively low. Also low expres-
sion levels oen are observed for regulatory non-coding RNAs [Mattick and Makunin,
], caremust be taken as genuinely low expression levels are difficult to differentiate
from noise in qPCR measurements.

Further, as the length of the candidate RNA is unknown, its structure prediction
may change drastically if the real length should differ from the predicted length. e
predicted length is  bps, while single precursor miRNA are generally approxim-
ately  bps in length, and non-coding RNAs such as the mouse Air RNA occupies
approximately  kb of genomic DNA [Saunders et al., ].

In addition, our preliminary findings cannot exclude that other mechanisms are
responsible for mediating the effects of the SNPs on downstream phenotypes.





Figure .: Quantitative real time polymerase chain reaction (qPCR) expression ana-
lysis of the candidate RNA, FTO and RPGRIPL. Panel (a) illustrates the expression
of the candidate RNA (abbreviated ncRNA in the figure), the FTO gene, and the RP-
GRIPL gene across a human brain cDNApanel. Panel (b) depicts the expression of the
candidate RNA and the two genes in a larger human cDNA panel, which includes non-
brain tissues as well. e candidate RNA's and the two genes' expression fold changes
(compared to the least expressed transcript in the given sample) are similar across all
tissues in panel (a) and (b). However, the absolute expression levels between the two
genes and the candidate RNA on average differed by a factor  in in panel (a) and
with a factor  in panel (b). Abbreviations: ncRNA, candidate non-coding RNA.

. Integrative analyses of body-mass index

Integrative pathway-based approaches have so far yielded limited insights as to which
pathway may cause obesity [Liu et al., , Speliotes et al., ,Heid et al., ]. In
the currently largestGWAstudy for body-mass index, researchers used theMAGENTA
method [Segrè et al., ] to search for overrepresented pathways among genes within
 kb flanking regions of the  associated SNPs. Based on gene sets annotated in the
KEGG Pathway, Ingenuity, PANTHER, and Gene Ontology databases, they identified
a couple of enriched pathways (platelet-derived growth factor signaling, translation
elongation, hormone or nuclear-hormone receptor binding, homeobox transcription,
regulation of cellular metabolism, neurogenesis and neuron differentiation, protein
phosphorylation, and numerous other pathways related to growth, metabolism, im-
mune and neuronal processes) [Speliotes et al., ]. However, interpretation of these





results is challenging due to the large number of genes within the enriched gene sets
( genes in the largest significantly enriched gene set). In addition, the pathways will
need to be validated in independent cohorts or other phenotypic data sets to verify that
they are not results of chance-correlations.

In another large GWA meta-analysis, constituting the largest GWA study of the
obesity risk-phenotype fat distribution, Heid et al searched for pathways enriched in
waist-hip ratio associations [Heid et al., ]. ey relied on SNPs from the discovery
phase in their meta-analysis with p-values < −5 ( independent SNPs in  genes)
and only identified a slight overrepresentation of developmental processes.

e limited success in identifying etiologic pathways adds to the notion that obesity
is a highly heterogeneous trait, and that the pathogenic processes are inadequately cap-
tured by solely proceeding within GWA data and currently existing integrative meth-
ods. Instead of assessing canonical pathways for enrichment in GWA signal, we hy-
pothesized that gene-products within implicated body-mass index associated loci may
physically interact with hitherto unknown obesity susceptibility gene products. To as-
sess this hypothesis, we integrated GWA data from the Genetics of in Obesity of Young
Adults (GOYA) study with PPI data, and are currently following up upon our results
(Paper III).

. Paper III - e ASIP gene's putative association with extreme
overweight

Very recently theGIANT consortium (Genomewide Investigation of ANropometric
measures) identified  loci, which robustly associatedwith body-mass index [Speliotes
et al., ]. Based on these implicated loci, I assembled a list of putative body-mass
index susceptibility genes, and tested whether any of the protein complexes from our
PPI meta-database was significantly enriched in these. e most significant complex
was centered on the known susceptibility gene MCR. We found  other genes in the
complex and validated one of them, ASIP, in an independent GWA-based cohort for
early onset obesity.

e followingmanuscript is written in a short format (following guidelines for Brief
Communications andReports) and is still under preparation. Currently, we are seeking
to replicate the SNPs in the ASIP gene in additional independent cohorts. Until the
current findings have been replicated in these they should be interpreted with care.

ey used the PANTHER tool [omas et al., ], which assesses over-representation of gene onto-
logy gene sets, and the GRAIL tool [Raychaudhuri et al., ].
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Also 32 loci to date have been robustly associated with body-mass index (BMI), they account for less 2-4% of the 

genetic variation in BMI. As the heritability of  BMI is estimated to be 40-60%, we searched for novel BMI risk variant 

within genes shown to interact physically with gene products from the BMI-associated loci. Using an independent 

replication cohort, we found that the rs819163 SNP in the agouti signaling protein (ASIP) gene, which gene product 

interacts with the MC4R protein, associated with extreme obesity (P = 1.9e-5). 
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Recently, Speliotes et al.  reported 32 loci that convincingly associated with BMI (kg/m2) [1]. In the Genetics of 

Overweight Young Adults study (GOYA), we replicated 9 of the found loci in a genome-wide association (GWA) study 

of ~2,600 extreme overweight cases (mean BMI = 35.3) and a similar number of population-based controls, both drawn 

from a cohort of 225,000 European women and men [2]. However, despite estimations that heritability of BMI is 

between 40 and 60%, the current loci explain less than 5% of the genetic variation in BMI, suggesting that several risk 

variants still need to be identified. SNPs exerting modest relative risks are less likely to be identified in GWA studies 

due to the large number of SNPs tested. Within that line of reasoning it has been hypothesized that genetic associations 

are enriched within biological pathways [3]. Also, definition and delineation of pathway organization is constrained to 

the interactome data present in databases, protein-protein interaction data is increasingly being considered as reliable, 

high-coverage, and phenotypically unbiased pathway organization source [4], 

 

The premise of our study was that gene products from known BMI-associated loci are over-represented in specific 

protein complexes that are etiological to obesity. Specifically, we hypothesized that the gene-sets coding for proteins in 

risk modules incriminate currently unknown BMI susceptibility genes. In this study, we aimed at first identifying 

putative obesity risk gene sets, and subsequently to test each incurred gene for association with BMI. While the former 

step is based on already known BMI susceptibility genes and protein complex organization data, the latter should be 

based on a study cohort that is independent from the one used to identify the known obesity susceptibility genes. The 

overall aim is to identify genes that have not yet been associated with BMI. 

 

To that end, we first compiled a list of 40 putative BMI susceptibility genes by considering all genes reported by the 

GIANT consortium (including up to 3 genes from single loci in case multiple genes were reported for that loci) (Suppl. 

Table 1). Next, we compiled a list of 12,714 protein complexes by extracting high-confidence protein complexes from a 

protein-protein interaction meta-database used and validated in previous studies (Suppl. Methods) [4,5]. We iteratively 

calculated the over-representation of BMI-associated genes in each protein complex and identified a complex centered 

on the MC4R gene as being most highly enriched in BMI-associated genes (P = 4.1e-4) (Figure 1). To adjust for 

multiple testing of the large number of protein complexes, we assembled 100,000 random complexes retaining the 

properties from the observed protein complexes and found that the observed MC4R complex indeed was significantly 

enriched in BMI-associated genes (P = 2.0e-4). 

 

The MC4R complex comprised 14 gene products, of which MC4R and POMC led to the over-representation of known 

BMI-associated genes (Table 1). Among the 14 genes were NPY and AGRP, which in previous candidate gene 

approaches have been associated with obesity [6], but also a few other genes (ADRBK1, ASIP, ATRNL1, MC1R, 

NPY1R, NPY5R, PMCH, and PRKACA) that, to our knowledge, have not been genetically associated with human 

BMI before. Note, that these findings are solely based on GIANT- and protein-protein interaction data. To validate 

these genes as likely human obesity susceptibility genes, we retrieved GWA data of 2,633 extreme overweight young 

adults and an equal number of randomly selected population-based controls from the GOYA study. We used the 

MetaRanker tool [7] to compute p-values for the 14 genes in the MC4R complex based on their GOYA SNPs 

associations with extreme BMI (Table 1, column 4). Briefly, the MetaRanker method accomplishes this by (a) mapping 

SNPs to genes, (b) scoring genes based on their most significant SNP, and (c) adjusting genes’ p-values based on the 
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number of independent SNPs at each loci. After further adjusting the gene p-values by the number of genes in the 

complex (n = 14), we found that the ASIP gene remained highly significant (adjusted P = 2.7e-4) (Table 1, column 5). 

The other genes exhibiting slight significance the previously known BMI susceptibility genes POMC and MC4R (P = 

0.01 and P = 0.03, respectively). To assess whether the entire MC4R complex validated in independent GWA data, we 

used the complete GOYA GWA data to calculate p-values for 21,845 human protein-coding genes, quantifying their 

association with extreme obesity, and used a one-sided Kolmogorov-Smirnov test to test whether the MC4R complex 

gene p-values were significantly enriched in the low end of the distribution of all gene p-values (Suppl. Methods). We 

found that this was indeed the case (P = 2.5e-4). In summary, the MC4R complex validated as being enriched in BMI-

associated genetic variation in an independent study cohort (GOYA data was not part of the GIANT meta-analysis), 

and, in particular, the ASIP stands out as a novel BMI susceptibility gene. 

 

In the ASIP locus the SNP rs819163 was most significant (P = 1.9e-05) with an odds ratio of 0.77 (L95 = 0.68; U95 = 

0.87) (Figure 2). In the previous GOYA GWA analysis, this SNP was not considered for replication as it was 

marginally above their replication selection threshold (P < 1.0e-5). To replicate the ASIP loci in an additional cohort, 

we retrieved unpublished genotype data from the NUGENOB weight loss intervention study [8]. Based on genotype 

data from 770 obese women and men (mean BMI = 35.6), we computed the association with a highly correlated nearby 

SNP rs819614 (r2 = 0.92; D’ = 1) with weight loss and postprandial fat oxidataion capacity. Whereas the rs819164 was 

not significant with respect to weight loss, it reached statistical significance in the association analysis with postprandial 

fat oxidation capactiy (P = 0.004). 

 

ASIP encodes a 14,515-kDa protein of 132 amino acids that is primarily known to function as a paracrine signaling 

molecule, which induces hair follicle melanocytes pigmentation changes [10]. Interestingly, the ASIP protein has been 

shown to act on melancortin signaling by inhibiting MC4R [11], has been observed under respiratory quotient and long 

term weight change linkage peaks [12,13], and the ASIP mouse homolog, which is 85% similar the human protein, has 

been implicated in obesity [14].  

 

To evaluate the tissue-specificity of the MC4R complex, we retrieved published gene expression data from a total of 

951 healthy subjects across 37 human tissues (Suppl. Methods, Suppl. Table 2) [15]. Using a validated methodology 

[16], we calculated for each tissue the average Pearson correlation between the expression levels of the MC4R gene and 

the expression levels of its protein interactions partners, and found that these were most highly correlated in the thyroid 

(average r2 = 0.69). By computing the average Pearson correlation coefficient for 100,000 random complexes, we found 

that the observed thyroid average Pearson correlation coefficient was indeed significant (P = 5e-4) (Suppl. Methods). 

The only other tissues where the MC4R complex average Pearson correlation coefficient was significant was smooth 

muscle (average r2 = 0.33; P = 0.03). MC4R is hypothesized to impact weight regulation particularly by acting in the 

hypothalamus [17]. However, despite the hypothalamus average Pearson correlation coefficient being above the 90 

percentile across all 39 tissues, it was not significant after permutation analysis (average r2 = 0.33; P = 0.15). The 

difference between the average correlation coefficients in thyroid and hypothalamus was partly due to differences in co-

expression between MC4R and ASIP, which was markedly high in the thyriod (r2 = 0.89, P = 0.01), and absent in the 

hypothalamus. Note, that these findings were based on gene expression data from non-obese individuals. Unfortunately, 
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we could not retrieve any data from human hypothalamic samples, which otherwise would have allowed us to assess if 

the obese-state introduces MC4R-comlex co-expression changes. 

 

In conclusion, we identified a protein complex centered on MC4R, which exhibited significant over-representation of 

genes from known BMI-associated loci. Using data from the independent GOYA and NUGENOB cohorts, we validate 

the ASIP gene as candidate gene for extreme obesity and find indication for an association with postprandial fat 

oxidation capacity. Finally, we show that the specific MC4R complex, including ASIP, in non-obese individuals is 

highly co-expressed in the thyroid and hypothalamus. Studies of gene expression across the here-in studied tissues from 

obese individuals are needed to clarify whether, and in which tissues, the MC4R risk module exhibits altered co-

expression, and thereby altered function in obesity. 
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GIPR 

ENSG00000010310 
Speliotes, 
NG, 2018 20935630     x 

Same 
locus as 
QPCTL 1 

QPCTL 
ENSG00000011478 

Speliotes, 
NG, 2017 20935630   x  4 

MTCH2 ENSG00000109919 

Willer CJ, 
Nat Gen. 
2009 19079261 x x x   na 

NUDT3 
ENSG00000112664 

Speliotes, 
NG, 2036 20935630   x  9 

HMGCR 

ENSG00000113161 
Speliotes, 
NG, 2022 20935630     x 

Same 
locus as 
FlJ35779 77 

RBJ 

ENSG00000115137 
Speliotes, 
NG, 2010 20935630   x 

HGNC 
synonym 
DNAJC27 1 

POMC 

ENSG00000115138 
Speliotes, 
NG, 2012 20935630     x 

Same 
locus as 
RBJ 14 

FANCL 
ENSG00000115392 

Speliotes, 
NG, 2026 20935630   x  18 

TNNI3K 
ENSG00000116783 

Speliotes, 
NG, 2019 20935630     x   7 
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PTBP2 
ENSG00000117569 

Speliotes, 
NG, 2030 20935630   x  7 

SEC16B ENSG00000120341 

Thorleifsson 
G, Nat Gen. 
2009 19079260 x x x   18 

MTIF3 
ENSG00000122033 

Speliotes, 
NG, 2031 20935630   x  na 

GTF3A 

ENSG00000122034 
Speliotes, 
NG, 2032 20935630     x 

Same 
locus as 
MTIF3 28 

TMEM160 
ENSG00000130748 

Speliotes, 
NG, 2024 20935630   x  na 

ZC3H4 

ENSG00000130749 
Speliotes, 
NG, 2025 20935630     x 

Same 
locus as 
TMEM160 na 

FAIM2 ENSG00000135472 

Thorleifsson 
G, Nat Gen. 
2009 19079260 x x x  2 

HMGA1 

ENSG00000137309 
Speliotes, 
NG, 2037 20935630     x 

Same 
locus as 
NUDT3 62 

MAP2K5 
ENSG00000137764 

Speliotes, 
NG, 2015 20935630   x  30 

ADCY3 

ENSG00000138031 
Speliotes, 
NG, 2011 20935630     x 

Same 
locus as 
RBJ 12 

SLC39A8 
ENSG00000138821 

Speliotes, 
NG, 2020 20935630   x  na 

FTO ENSG00000140718 

Willer CJ, 
Nat Gen. 
2009 19079261 x x x   na 

TMEM18 ENSG00000151353 

Willer CJ, 
Nat Gen. 
2009, 
Thorleifsson 
G, Nat Gen. 
2009 

19079261, 
19079260 x x x  na 

FLJ35779 
ENSG00000152359 

Speliotes, 
NG, 2021 20935630     x   2 

KCTD15 ENSG00000153885 

Willer CJ, 
Nat Gen. 
2009, 
Willer CJ, 
Nat Gen. 
2009 

19079261, 
19079260 x x x  9 

GNPDA2 ENSG00000163281 

Willer CJ, 
Nat Gen. 
2009 19079261 x x x   na 

TUB 

ENSG00000166402 
Speliotes, 
NG, 2035 20935630   x 

Same 
locus as 
RPL27A 15 
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RPL27A 
ENSG00000166441 

Speliotes, 
NG, 2034 20935630     x   627 

MC4R ENSG00000166603 

Willer CJ, 
Nat Gen. 
2009, 
Thorleifsson 
G, Nat Gen. 
2009 

19079261, 
19079260 x x x  13 

GPRC5B 

ENSG00000167191 
Speliotes, 
NG, 2013 20935630     x 

Same 
locus as 
GPRC5B na 

LRP1B 
ENSG00000168702 

Speliotes, 
NG, 2029 20935630   x  139 

ZNF608 
ENSG00000168916 

Speliotes, 
NG, 2033 20935630     x   5 

ETV5 ENSG00000171656 

Thorleifsson 
G, Nat Gen. 
2009 19079260 x x x  1 

NEGR1 ENSG00000172260 

Willer CJ, 
Nat Gen. 
2009, 
Willer CJ, 
Nat Gen. 
2009 

19079261, 
19079260 x x x   5 

LRRN6C 

ENSG00000174482 
Speliotes, 
NG, 2023 20935630   x 

HGNC 
synonym 
LINGO2 na 

IQCK 
ENSG00000174628 

Speliotes, 
NG, 2014 20935630     x   na 

CADM2 
ENSG00000175161 

Speliotes, 
NG, 2027 20935630   x  na 

BDNF ENSG00000176697 

Thorleifsson 
G, Nat Gen. 
2009 19079260 x x x   11 

SH2B1 ENSG00000178188 

Willer CJ, 
Nat Gen. 
2009, 
Thorleifsson 
G, Nat Gen. 
2009 

19079261, 
19079260 x x x  10 

PRKD1 
ENSG00000184304 

Speliotes, 
NG, 2028 20935630     x   26 

LBXCOR1 

ENSG00000188779 
Speliotes, 
NG, 2016 20935630     x 

Same 
locus as 
MAP2K5 4 

         
Abreviations:        
na: Not among protein in InWeb protein-protein interaction database  
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Figure 1: The blue notes represent the MC4R complex. Edges between nodes denote physical interaction at the protein 
level. The first-order protein interaction partners of the proteins in the MC4R-complex are colored in gray. 

 
 
Figure 2: Regional association plot of the ASIP loci. 
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Supplementary Methods 

 

Body-mass index loci and genes. To construct a list of body-mass index (BMI) susceptibility genes 

we mapped all genes reported in Speliotes et al. [1] to Ensembl gene identifiers resulting in a list of 41 

genes from a total of 32 BMI-associated loci (Supplementary Table 1).  

 

Protein-protein interaction data and assembly of complexes. Protein-complex assembly was based 

on our in-house meta-protein-protein interaction (PPI) database, previously described in [3,4]. Briefly, 

it incorporates PPIs from 11 organisms across 13 databases and incorporates a total of 12,714 proteins 

and 173,500 PPIs based on 40,085 published articles. We constructed a set of 12,714 protein 

complexes, by considering each protein and its direct protein interaction partners as a single protein 

complex entity. Protein complexes were not restricted to a specific size, nor did we merge protein 

complexes that were highly overlapping. Each protein complex was represented by gene-set, assuming 

a one-to-one mapping between genes and complexes (a common assumption in PPI-based analysis, as 

most PPI databases do not report which specific splice product of a given gene was used in the PPI 

experiment). Complexes were plotted using Cytoscape [5]. 

 

Over-representation analysis. Significance of over-representation of BMI susceptibility genes in a 

given protein complex was tested in the hypergeometric distribution, using parameters k, n, m, M. The 

parameter k, denoted the overlap between the protein complex gene-set and BMI susceptibility genes; 

the parameter n denoted the size of the protein complex gene set; the parameter m denoted the total 

number of BMI susceptibility genes found in at least one of all protein complex gene sets (n=29); and 

parameter M denoted the total number of proteins part of the analysis (n=12,714). 

 

Permutation-based protein complex p-values. As we tested 12,714 complexes for over-

representation of BMI susceptibility genes we needed to adjust for multiple testing. As the protein 

complex gene-sets were overlapping and the tests hence not could be regarded as independent 

instances, we preferred permutation-based p-value computations above Bonferroni correction. We 

computed a permutation-based p-value for the MC4R complex by sampling 100,000 random 

complexes of the same size (n=19), while sampling each protein based on its observed likelihood to 

occur in a protein complex (its prevalence across all observed protein complexes). We computed the 

overrepresentation of BMI susceptibility genes in each of the random complexes, counted the number 

of random protein complexes that obtained an overrepresentation p-value equal or better than the 

observed MC4R complex p-value, and finally calculated a permutation-based p-value by dividing that 

count with the number of total permutations (n=100,000). 

 

Validation cohorts and gene p-value assignment. We used genome-wide association (GWA) data 

from the Genetics of Overweight Young Adults study (GOYA) study [6] and the NUGENOB study [7] 

to validate genes in the MC4R protein complex gene set. As our analysis was gene-centric, we sought 

to validate each gene at the gene- instead of single-nucleotide polymorphism (SNP)-level. We 



accomplished this by uploading each GWA study to the MetaRanker web tool 

(www.cbs.dtu.dk/services/metaranker) [4], which, among other things, scores the entire protein-coding 

part of the human genome based on GWA study data uploaded by the user. Briefly, the method (a) uses 

a predefined mappings scheme to map SNPs to genes, (b) identifies the lowest SNP mapped to a given 

gene, (c) assigns this p-value as the gene p-values, and (d) adjusts this gene p-value by the number of 

independent SNPs mapped to the gene. 

 

Enrichment of BMI-associated loci genes in GOYA GWA study. We used a one-sided 

Kolmogorov-Smirnov test statistic to assess whether the genes from the BMI-associated loci were 

enriched in the tail of the GOYA GWA study gene p-value distribution (representing genes that are 

more likely to be associated with BMI). The calculation was done using the statistical software package 

R (version 2.11). 

 

Gene expression data and average Pearson correlation coefficient analysis. To assess the degree of 

co-expression between the genes in the MC4R complex, we downloaded a gene expression data set 

comprising 5,372 human gene expression samples profiled across 369 different cell and tissue types 

from the ArrayExpress database (www.ebi.ac.uk/arrayexpress; Data set ID, E-TABM-185) [2]. 

Samples were all from the same microarray platform (Affymetrix U133A) and already normalized. We 

excluded non-healthy samples and samples derived from cell lines, and retained a set of 951 samples 

from 37 human tissues for our analyses. We retained only genes, which gene products among our 

complexes and ended up with at set of 10,457 genes. 

 To assess to in which tissues and to what extend genes underlying the MC4R complex were 

co-expressed, we used methodology previously applied within protein complex analysis by Taylor et 

al. [8]. For a given gene set and tissue, the Pearson correlation coefficient between the central gene (the 

central hub protein in the given protein complex) and each peripheral gene (the hub protein’s physical 

interaction partners) was computed across all samples and averaged into an average Pearson correlation 

coefficient (APCC). Hence, the APCC for a given complex specifies the degree of co-expression of the 

central gene and the peripheral genes in a specific tissue. 

 To assess whether the APCCs observed for the MC4R complex in the various tissue was 

deviating significantly from random expectations, we used permutation analysis. For a given tissue 

with k samples, we re-computed the APCC based on expression data from k samples that were sampled 

with equal probability from the pool all 951 samples. This procedure was repeated 100,000 times to 

yield a tissue-specific background distribution of APCC scores, through which the significance of the 

observed APCC was calculated (by counting the number of random APCC that were equal or higher 

than the observed APCC for that tissue, and dividing that number by the total number of permutations). 



Supplementary Tables 
 

	
  

Supplementary Table 1: List of genes assembled based on the loci reported by Speliotes et al. [1].  



	
  
 

 

Table 2: List of the human tissue types used in the co-expression analysis. For 
more information please refer to Lukk et al. [2]. 
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5Integrative analyses based
on metabolic network
reconstructions

Inborn errors in metabolism refer to single-gene mutations in enzymes that result in
changed metabolite concentrations [Mootha and Hirschhorn, ]. Back in  A.
E.Garrod predicted that thesemutations reflected extreme examples of variationwhich
is present in less severe but more common forms of the disease within the general
population [Garrod, ]. A recent study has shown that common genetic variation
(i.e. inborn variation in metabolism [Mootha and Hirschhorn, ]) is responsible
for inter-individual differences in metabolite concentrations [Illig et al., ]. Other
examples on association studies between common genetic variation and endogenous
traits, i.e. traits upstream of the classical endpoints like body-mass index, are glucose
[Dupuis et al., ,Saxena et al., ] and lipid traits [Kathiresan et al., ,Mohlke
et al., , Willer et al., a, Teslovich et al., ]. Illig et al showed that three
of their nine replicated loci reported (within acyl-CoA dehydrogenase genes ACADS,
ACADM, and ACADL) associated with fatty acid levels through beta-oxidation path-
ways [Illig et al., ]. Interestingly, reconstructions of human metabolism (the main
topic of this chapter), which comprise information on metabolic reactions (enzyme-
metabolite relationships), may be used to augment analyses of metabolic diseases. is
chapter outlines how reconstructed networks of human metabolism may be used to
generate hypotheses as towhichmetabolite levels are altered due to changes in enzymes'
gene expression levels. For phenotypes that have not yet been analyzed by coupled
GWA and metabolomics studies, these approaches constitute an elegant way to gener-
ate hypotheses about metabolites that may be perturbed in individuals with metabolic
risk-phenotypes.

. Metabolic network reconstructions

e human metabolic network is the most well-studied biochemical network [Ma and
Goryanin, ]. Formalized reconstructed networks are needed to analyze metabolic
pathways, as they, like signaling networks, consist of a large interconnected web of
reactions. Compared to PPI networks and regulatory networks formed by protein-
DNA interactions, metabolic network representations are considered more complete
in terms of coverage ofmolecular components, andmore reliable with respect to the in-
teractions contained in the networks [Ma and Goryanin, ]. Another difference to





Enzymes Reactions Metabolites Pathways
EHMN , , , 

Recon  , , , 

Table .: Overview of number of enzymes, metabolic reactions, metabolites and path-
ways in the Edinburgh Human Metabolic Network (EHMN) and Homo sapiens Recon-
struction  (Recon ) metabolic network reconstructions.

PPI and regulatory networks is that metabolic networks can comprise up to three high-
throughput data layers, viz. transcriptomics data measuring enzymes' gene expression
levels, proteomics datameasuring enzymes' protein concentrations, andmetabolomics
data measuring metabolite concentrations.

Currently two intracellular humanmetabolic reconstructions are available; theHomo
sapiens Recon  (Recon ) reconstruction [Duarte et al., ] and the Edinburgh Hu-
man Metabolic Network (EHMN) reconstruction [Ma et al., ]. Both networks
consist of a bi-partite graph representation, that is, they comprise networks with two
types of nodes namely metabolites and enzymes; a metabolite is connected to an en-
zyme if it is catalyzed (i.e. produced or consumed) by the particular enzyme. In these
metabolic network reconstructions, metabolites are always linked to enzymenodes and
never to each other, and enzyme nodes will never be linked to other enzyme nodes.
Both networks are compartmentalized. Table . shows the coverage of both recon-
structions. e overlap between both reconstructions is hard to quantify, since they
use different metabolite nomenclatures that are not easily mapped to each other.

Recon  and EHMN reconstructions were assembled in similar manners. First all
enzymatic genes in the human genome (along with their correct Enzyme Commis-
sion classification number were identified. Next, metabolic reactions were mapped to
the enzymes identified in the first step. Annotated information on metabolic reactions
was included from several databases, such as the KEGGLIGANDdatabase [Goto et al.,
], the BioCyc database [Romero et al., ], and the Reactome database [Cro
et al., ]. For the EHMN network assembly manual literature lookups were used
as the last step in the construction in order to consolidate inconsistencies in enzyme-
reaction mappings and annotations. For the Recon  network, simulations were used
to identify gaps in the model, which subsequently were patched by targeted literature
searches. Both networks consist solely of interactions with direct physical evidence
from literature. Whereas EHMN is mainly aimed at providing a scaffold for data in-
tegration, the Recon  model represents a stoichiometrix matrix that can be used for
other mathematical analysis like flux balance analyses [Burgard et al., ]. Con-
sequently, reconstructions of humanmetabolism provide relatively complete and high-
confidence network models, compared to metabolic databases. In addition to the two
metabolic reconstructions described above, there are tissue-specific versions of Recon
 [Shlomi et al., ] and a liver-specific metabolic network reconstruction [Gille
et al., ].

e original EHMN was not compartmentalized but recently updated to include compartments [Hao
et al., ].

 http://www.chem.qmul.ac.uk/iubmb/enzyme
For instance approximately  components and reactions in EHMN were not part of the KEGG

LIGAND database [Ma and Goryanin, ] and several reactions in Recon  were found in literature but
not in databases [Duarte et al., ].





. Integration of metabolic reconstructions with gene expression
data

Metabolic network reconstructions provide scaffolds for integration of high-throughput
data, such as gene expression data. ey provide a context that enables the direct map-
ping of measurements to nodes in the network. Differential gene expression analysis
per se may provide novel insights at the gene level but miss groups of genes that, only
in aggregate, correlate with the trait of interest. For example, in a study of breast can-
cer [Taylor et al., ] the SRC oncogene was not differentially expressed between the
cancer patients that were disease-free aer follow-up and those who died of cancer.
However, when Taylor et al compared the co-expression of all the physical interacting
gene products of SRC gene, they found that this sub-network was significantly regu-
lated between groups (in terms of coordinated gene expression, and across several in-
dependent gene expression studies) [Taylor et al., ]. Patil and Nielsen formalized
this approach into a framework referred to as Reporter Metabolite Analysis [Patil and
Nielsen, ]. Whereas Patil and Nielsen applied their method on yeast gene expres-
sion data, my colleagues and I applied this method to three different human studies
(Papers IV-V and [Capel et al., ]).

. Paper IV - A method for metabolic biomarker discovery

Cellular metabolic networks are highly interconnected and oen tightly regulated; any
perturbations at a single node can thus rapidly be conveyed to the rest of the network.
Such complexity presents a considerable challenge in pinpointing keymolecularmech-
anisms and biomarkers associated with insulin resistance and type  diabetes. In the
following paper, we address this problem by using a methodology that integrates gene
expression data with the human metabolic reconstructions.

We demonstrate our approach by analyzing gene expression patterns in skeletal
muscle. e analysis identified transcription factors and metabolites that represent
potential targets for therapeutic agents and future clinical diagnostics for type  dia-
betes and impaired glucose metabolism. In a broader perspective, the study provides a
framework for analysis of gene expression datasets from complex diseases in the con-
text of changes in cellular metabolism.
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Type 2 diabetes mellitus (T2DM) is a disorder characterized by both insulin resistance and impaired insulin secretion. Recent
transcriptomics studies related to T2DM have revealed changes in expression of a large number of metabolic genes in a
variety of tissues. Identification of the molecular mechanisms underlying these transcriptional changes and their impact on
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addition to metabolites from TCA cycle, oxidative phosphorylation, and lipid metabolism (known to be associated with
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connected metabolites NAD+/NADH and ATP/ADP were also identified as reporter metabolites that are potentially
contributing to the widespread gene expression changes observed in T2DM. An algorithm based on the analysis of the
promoter regions of the genes associated with reporter metabolites revealed a transcription factor regulatory network
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Introduction

Type 2 diabetes mellitus (T2DM) is emerging as one of the main

threats to human health in the 21st century with an estimated 300

million individuals with T2DM by the year 2025 [1,2]. T2DM is

characterized by both insulin resistance (as manifested by reduced

insulin-stimulated glucose uptake in skeletal muscle and adipose

tissue and inappropriately high hepatic glucose output [3,4]) and

reduced insulin secretion by pancreatic b-cells [3,5]. Although the

specific molecular pathophysiology remains unclear, many risk

factors have been identified for T2DM, including family history of

diabetes and prominent environmental factors such as alterations

in early life development, excessive food intake, obesity, decreased

physical activity and aging [2,3,5]. At the cellular level, multiple

regulatory mechanisms and metabolic pathways may contribute to

the pathogenesis of insulin resistance, potentially mediated by

alterations in insulin signaling [6], mitochondrial oxidative

metabolism and ATP production [7–9], fatty acid oxidation

[10], or proinflammatory signaling [11]. Similarly, alterations in b-

cell development and metabolism [5] may contribute to decreased

insulin secretion.

Available human tissue transcriptome data related to T2DM

[12,13] provide an opportunity for identification of novel molecular

mechanisms underlying the metabolic phenotype of T2DM. This

task is challenging due to the need to account for the inherent high

connectivity of bio-molecular interaction networks. We have

utilized a network-centered methodology to link diabetes-related

alterations in gene expression to metabolic hot spots and

transcription factors potentially responsible for gene expression

changes.

Rationale and methodology
Metabolic phenotypes at a cellular level are essentially charac-

terized by concentrations of metabolites and fluxes through the

reactions that make up the metabolic network. Fluxes, in turn, are

dependent on metabolite levels, enzyme activities, abundance of

effectors and possibly other variables. Measurement of fluxes and

metabolite concentrations at the entire metabolic network-scale is,

however, a difficult task in humans due to a variety of technological

and experimental limitations. By contrast, methods for measure-

ment of expression of genes encoding metabolic enzymes are

relatively well-established. Thus, the primary goal of this study is to
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use informatics approaches to integrate available gene expression

data with metabolic networks, in order to predict metabolic

phenotypes of skeletal muscle linked to the pathogenesis of type 2

diabetes. Such an approach will help not only to gain insight into the

organization of transcriptional regulation in human tissues, but also

provide guidance for improved design of experimental strategies for

obtaining metabolite and flux data, which can be further integrated

into metabolic models.

To achieve these goals, we applied an extension of the algorithm

described in [14] (for various applications of this algorithm see

[14–18]), which enables identification of so-called reporter

metabolites, or metabolic hot spots around which transcriptional

regulation is centered (Figure 1A). This analysis is based on the

assumption that under most conditions of physiological interest,

fluxes through enzymes connected to a metabolite are coordinated

in order to maintain physiological homeostasis, or to eventually

reach a new (pseudo-) steady state. Moreover, transcriptional

regulation of expression of genes encoding critical enzymes in

metabolic flux pathways facilitates concordance with the metabolic

demands of the cell and corresponding stoichiometric and

thermodynamic constraints on fluxes. For this analysis, we used

two recently published human metabolic network models: i) Homo

sapiens Recon1 [19], and ii) Edinburgh Human Metabolic Network

(EHMN) [20].

We further hypothesized that the observed coordinated changes

around reporter metabolites can be, at least in some cases,

attributed to common transcriptional regulatory mechanisms.

Specifically, we hypothesize that the neighbor enzymes of reporter

metabolites may share one or more transcription factor binding

sites in the promoter regions of the corresponding genes. In order

to identify such potential regulatory players, we tested promoter

sequences of the genes associated with the reporter metabolites for

enrichment of known transcription factor binding motifs

(Figure 1B). Transcription factors identified in this fashion provide

Author Summary

Type 2 diabetes mellitus is a complex metabolic disease
recognized as one of the main threats to human health in
the 21st century. Recent studies of gene expression levels
in human tissue samples have indicated that multiple
metabolic pathways are dysregulated in diabetes and in
individuals at risk for diabetes; which of these are primary,
or central to disease pathogenesis, remains a key question.
Cellular metabolic networks are highly interconnected and
often tightly regulated; any perturbations at a single node
can thus rapidly diffuse to the rest of the network. Such
complexity presents a considerable challenge in pinpoint-
ing key molecular mechanisms and biomarkers associated
with insulin resistance and type 2 diabetes. In this study,
we address this problem by using a methodology that
integrates gene expression data with the human cellular
metabolic network. We demonstrate our approach by
analyzing gene expression patterns in skeletal muscle. The
analysis identified transcription factors and metabolites
that represent potential targets for therapeutic agents and
future clinical diagnostics for type 2 diabetes and impaired
glucose metabolism. In a broader perspective, the study
provides a framework for analysis of gene expression
datasets from complex diseases in the context of changes
in cellular metabolism.

Figure 1. Schematic overview of the methodology used for the identification of reporter metabolites and associated putative
regulatory sequence motifs. A) Scoring system for identification of reporter metabolites. Each metabolite is scored based on the scores of the
associated enzyme-catalyzed reactions. Each enzyme, in turn, is assigned a score based on median of the p-values of the probes representing the
corresponding gene. In case of a reaction catalyzed by an enzyme complex or a set of isozymes, minimum of the p-values of the corresponding
enzymes is chosen. Numbers in bold are Z-scores for each reaction, the rest of the numbers represent p-values (significance of differential
expression). B) Identification of transcription factor binding motifs. For a reporter metabolite, a set of up/down regulated neighbor (enzyme-coding)
genes is selected. Promoter regions, upstream of transcription start site (TSS) of each of the selected genes are assessed for the enrichment of known
transcription factor (TF) binding sequence motifs.
doi:10.1371/journal.pcbi.1000729.g001

Metabolic Regulatory Signatures of Type 2 Diabetes
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clues to the regulatory mechanisms that lead to observed gene

expression changes in the metabolic network.

Since our goal is to identify reporter metabolites and

transcription factors potentially involved in diabetes pathogenesis

and progression, we analyzed two independent studies of skeletal

muscle transcriptomics in individuals with established type 2

diabetes or insulin resistance [8,9] (Text S1). In the first study [8],

biopsies were obtained following insulin stimulation from a cohort

of 43 Swedish men of Caucasian ethnicity with a spectrum of

glucose tolerance, including 17 with normal glucose tolerance

(NGT), 8 with impaired glucose tolerance (IGT), and 18 with

established T2DM. The second dataset [9] was derived from a

cohort of 15 subjects of Mexican American ethnicity, in whom

muscle biopsies were performed in the fasting state. Importantly,

this cohort included individuals with not only established diabetes

(5 subjects, T2DM), but also individuals with completely normal

glucose tolerance but a spectrum of insulin resistance; normal

glucose tolerant subjects were subdivided by family history-linked

diabetes risk (4 family history positive, more insulin resistant

subjects, FH+; and 6 family history negative, more insulin sensitive

subjects, FH2). With this approach, the individual contributions

of isolated insulin resistance and diabetes risk (in the setting of

normoglycemia, FH+), mild elevations in postprandial glucose

(IGT), and established diabetes can be individually assessed.

Moreover, the possible contribution of family history, potentially

mediated by genetics or shared environment, can be assessed.

Thus, we predict that analysis of the common patterns resulting

from the two datasets will identify regulatory signatures potentially

independent of study cohort and design variation but common to

the pathophysiology of insulin resistance and diabetes.

Results

In present study, we performed reporter metabolite analysis

based on pair-wise comparisons within each dataset; differential

expression and its significance were assessed with robust multi-

array average (RMA) and empirical Bayes testing. Significance of

differential expression for each gene was used as a scoring metric

(Materials and Methods). The results are summarized as metabolic

signatures (reporter metabolites) and regulatory signatures (tran-

scription factors) for T2DM.

Metabolic signatures of T2DM
Swedish male dataset. Reporter metabolite analysis for three

pair-wise comparisons, viz., T2DM vs NGT, T2DM vs IGT, and

IGT vs NGT, revealed significant reporter metabolites (p-

value#0.05) participating in lipid metabolism, TCA cycle,

oxidative phosphorylation (OXPHOS) and glycolysis (Table 1,

Table 2, Table S1 and Table S2). Among reporter metabolites

identified for the T2DM vs NGT comparison were lipid species 1,2-

diacyl-sn-glycerol (DAG), acetoacetyl-CoA, and the sphingolipid

sphinganine. These are interesting, as prior studies [3,21–23] have

demonstrated that the related lipid molecules diacylglycerols

(DAG), long-chain fatty acyl CoAs, and ceramides correlate

positively with triglyceride content and inversely with insulin

sensitivity [5] and have been shown to induce insulin resistance

[3]. Furthermore, given that saturated fatty acids appear to play a

particularly important pathogenic role in insulin resistance [24], it is

interesting that several metabolites of saturated fatty acids (such as

hexanoyl-CoA, palmitoyl-CoA, tetradecanoyl-CoA, lauroyl-CoA,

decanoyl-CoA and butanoyl-CoA) were found as reporter

metabolites with mostly up-regulated neighboring genes in the

IGT vs NGT comparison (Table 1 and S2), and thus may serve as

potential markers of insulin resistance and IGT.

TCA cycle metabolites citrate and 2-oxoglutarate, with down-

regulated neighboring genes, were also uncovered as reporter

metabolites in the T2DM vs NGT comparison (Table 1, S1 and S2).

These results are concordant with a study of human urine

metabolome profiles from patients with T2DM [25], in which

levels of citrate and 2-oxoglutarate were lower in T2DM compared

to healthy controls [26]. Among other mitochondrial metabolites,

reduced and oxidized forms of cytochrome c and ubiquinol were

identified as reporter metabolites (T2DM vs NGT, Table S1) with

down-regulated expression of the associated genes.

Impaired glucose tolerance typically reflects an important

transition between normoglycemia and overt diabetes, reporter

metabolites which are identified in both IGT vs NGT and T2DM

vs NGT, but not significantly different in the T2DM vs IGT

comparison (e.g. phosphatidylethanolamine, 2-hydroxyglutarate,

2-oxoglutarate, 39,59-cyclic AMP, ATP, Table S1 and S2) may be

considered novel biomarkers of early-stage glucose intolerance.

Mexican-American dataset. We similarly performed reporter

metabolite analysis using both Recon1 and EHMN metabolic models

in the Mexican-American dataset. This analysis revealed significant

transcriptional regulation in metabolite nodes in TCA cycle,

oxidative phosphorylation, and lipid metabolism, for both T2DM

vs FH2 and FH+ vs FH2 comparisons (Table 2). Similar to the

Swedish Caucasian dataset, metabolites involved in oxidative

phosphorylation (e.g. ferrocytochrome c, H+, and fumarate) were

among the top-ranking reporter metabolites, identified in both the

T2DM vs FH2 and FH+ vs FH2 comparisons (Table 2, Table S3).

Interestingly, urinary levels of fumarate, an important link between

the TCA cycle and oxidative phosphorylation, were recently found to

be decreased in T2DM patients [25].

Analysis using the EHMN model revealed TCA cycle-related

metabolites, including 3-carboxy-1-hydroxypropyl-ThPP, aconi-

tate, succinyl-CoA, malate and fumarate, as significant reporter

metabolites (p-value#0.05), with mostly down-regulated expres-

sion of the genes encoding their neighboring enzymes. Ubiquinol

was found as reporter metabolite representative of electron

transfer chain. Several molecules within b-oxidation pathways,

such as 3-cis-dodecenoyl-CoA, glutaryl-CoA, trans-3-decenoyl-

CoA, 3-methylbutanoyl-CoA and 3-methylcrotonyl-CoA, as well

as in amino acid (leucine, lysine) metabolism were also identified as

reporters (Table 2, Table S4). Moreover, glutamate, glycerol

derivatives, phosphocreatine, a number of hormone derivatives

and many others (Table S3 and S4) were found as significant

reporter metabolites in the T2DM vs FH2 comparison.

Overlapping reporter metabolites between two study

populations. In order to determine the extent of overlap

between the two study populations, we performed a cluster

analysis of the pair-wise comparisons within the Swedish and

Mexican-American datasets (Figure 2). Jaccard distance metric

between two pair-wise comparisons (e.g. T2DM vs FH2 and FH+
vs FH2) was calculated based on the overlap of reporter metabolites

between the two comparisons. Jaccard distance provides a measure

of dissimilarity between two sets of reporter metabolites, and is

quantified as the fraction of non-overlapping reporter metabolites

between the two sets. While similar clustering patterns were

observed (Figure 2A and Figure S1A) independent of the use of

either EHMN or Recon1 metabolic model, Swedish and Mexican-

American studies clustered separately, perhaps related to differences

in study population, study design (e.g. fasting studies in Mexican-

Americans, insulin-stimulated studies in Swedish) or differences in

microarrays used (thus differing in the coverage of metabolic

enzymes). We observed substantial overlap between the T2DM vs

FH2 and FH+ vs FH2 comparisons, suggesting that insulin

resistance patterns could contribute to these findings.

Metabolic Regulatory Signatures of Type 2 Diabetes
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We next examined the overlap of reporter metabolites between

the two case studies (Figure 2B, Figure S1B, Table S5 and Table

S6). Owing to differences in the metabolite-gene connectivity

between EHMN and Recon1, the number of overlapping reporter

metabolites is generally higher for the EHMN analysis. To a large

extent, this difference is due to the groups of metabolites in

EHMN that share the same gene neighbors (whether two

metabolites share the same gene neighbors depends not only on

the network used, i.e. number of distinct biochemical reactions

associated with a particular enzyme, but also on the coverage of

genes on the particular microarray chip used). In addition to many

other metabolites, phosphocreatine appeared as a significant

Table 1. Reporter metabolites for Swedish male dataset.

Reporter Metabolite P-values
Enzyme neighbors
(Up-regulated:Down-regulated)

T2DM/NGT IGT/NGT T2DM/NGT IGT/NGT

Citrate 0.047 0.646 1:0 1:0 TCA cycle

Succinyl-CoA 0.013 0.285 2:3 2:3

2-Hydroxyglutarate* 0.002 0.023 0:1 0:1

2-Oxoglutarate* 0.049 0.047 8:11 8:11

Ferrocytochrome C; Ferricytochrome C 0.006 0.032 1:2 0:3 Oxidative phosphorylation

Ubiquinone-10 0.017 0.769 0:5 1:4

Ubiquinol-10 0.022 0.484 0:4 1:3

Phosphoenolpyruvate* 0.196 0.037 1:3 1:3 Glycolysis

D-Glyceraldehyde* 0.083 0.017 2:1 3:0

D-Alanine 0.016 0.330 0:3 0:3 Amino acid metabolism

L-Alanine 0.047 0.319 3:7 3:7

3-Methylglutaconyl-CoA{ 0.038 0.816 0:2 1:1

L-Leucine* 0.047 0.109 1:3 1:3

1,2-Diacyl-sn-glycerol (DAG)* 0.022 0.049 2:5 2:5 Lipid metabolism

1D-myo-Inositol 1,4-bisphosphate{ 0.060 0.151 0:3 2:1

3-Dehydrosphinganine* 0.232 0.035 1:1 2:0

Acetoacetyl-CoA* 0.009 0.462 1:4 2:3

Butanoyl-CoA{ 0.365 0.038 0:2 1:1

Decanoyl-CoA; Lauroyl-CoA* 0.268 0.033 1:2 2:1

Fatty acid* 0.021 0.756 3:4 3:4

Lophenol*1 0.007 0.749 0:1 0:1

Palmitoleoyl-CoA* 0.238 0.019 1:3 2:2

Palmitoyl-CoA* 0.179 0.014 3:4 6:1

Phosphatidyl glycerol phosphate 0.047 0.316 0:1 0:1

Phosphatidylinositol 4,5-bisphosphate 0.097 0.001 1:5 2:4

Propanoyl-CoA* 0.259 0.016 2:5 2:5

Prostaglandin E2 0.036 0.032 0:3 1:2

Sphinganine* 0.038 0.283 1:3 2:2

(Gal)3 (GalNAc)1 (Glc)1 (Cer)1* 0.023 0.034 1:2 1:2 Other

AMP{ 0.041 0.218 7:17 6:17

ATP{ 0.003 0.010 28:60 27:60

cAMP{ 0.033 0.049 2:0 2:0

CDPcholine 0.020 0.122 0:2 0:2

Choline phosphate 0.030 0.573 0:2 1:1

NAD+* 0.333 0.020 29:34 34:34

Phosphocreatine 0.025 0.176 0:1 1:0

Trichloroethanol* 0.020 0.038 1:2 3:0

*Reporter metabolites identified using EHMN metabolic network.
{Reporter metabolites identified in both networks.
1Plant metabolite, likely to be present in the EHMN due to incorrect annotation.
Reporter metabolites with p#0.05 in at least one of the comparisons showed in bold. Columns with enzyme neighbors show the number of up- and down-regulated
enzyme neighbors in the first condition (e.g. T2DM/NGT up- and down-regulated in T2DM comparing with NGT) for each of comparisons. Reporter metabolites without
marks were identified using Recon1 metabolic network. Metabolites written in italics are known to be directly/indirectly related to T2DM, see main text and Table S8.
doi:10.1371/journal.pcbi.1000729.t001
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reporter in both case studies, viz., for T2DM vs NGT and T2DM vs

FH2 comparisons. Phosphocreatine is an important energy

reservoir metabolite in skeletal muscle, and defects in recovery of

phosphocreatine have been identified in vivo in humans with insulin

resistance [27] and diabetes [28]. Interestingly, low levels of urinary

creatine have also been found in patients with T2DM [25].

Regulatory signatures of T2DM
In order to link the identified reporter metabolites to regulatory

pathways controlling gene expression, we hypothesized that en-

zymes associated with reporter metabolites would be regulated by

common transcription factors. As potential candidates subjected to

such regulation, we selected all reporter metabolites with at least 5

Table 2. Reporter metabolites for Mexican-American dataset.

Reporter metabolite P-values
Enzyme neighbors
(Up-regulated:Down-regulated)

T2DM/FH2 FH+/FH2 T2DM/FH2 FH+/FH2

2-Oxoglutarate 0.001 0.001 2:7 2:7 TCA cycle

L-Malate 0.098 0.029 1:4 2:3

Succinyl-CoA{ 0.011 0.009 0:5 0:5

Ferrocytochrome C;Ferricytochrome C 0.008 0.007 0:3 0:3 Oxidative phosphorylation

Fumarate 0.019 0.025 0:2 0:2

Ubiquinone-10{;Ubiquinol-10{ 0.040 0.021 1:3 1:3

2,3-Disphospho-D-glycerate{ 0.021 0.004 0:1 0:1 Glycolysis

2-Phospho-D-glycerate* 0.038 0.006 0:2 1:1

beta-D-Fructose* 0.049 0.038 0:2 0:2

D-Fructose 2,6-bisphosphate 0.037 0.136 0:2 0:1

D-Fructose 6-phosphate 0.013 0.119 4:6 3:7

D-Glucose* 0.037 0.066 0:7 1:5

D-Glucose 6-phosphate 0.009 0.014 1:3 1:3

D-Glycerate 2-phosphate 0.026 0.003 0:2 1:1

L-Lactate 0.048 0.067 1:2 1:2

Phosphoenolpyruvate 0.079 0.048 2:2 3:1

Pyruvate 0.042 0.202 1:6 1:6

2-Oxoadipate* 0.002 0.004 0:1 0:1 Amino acid metabolism

beta-Alanine 0.031 0.027 1:1 1:1

L-Glutamate{ 0.025 0.009 1:1 1:1

(R)-2-Methyl-3-oxopropanoyl-CoA* 0.043 0.118 0:2 0:1 Lipid metabolism

1,2-Diacyl-sn-glycerol (DAG)* 0.036 0.117 3:2 5:1

1D-myo-Inositol 1,4-bisphosphate 0.025 0.054 1:2 1:2

3-cis-Dodecenoyl-CoA* 0.009 0.039 0:3 0:3

Acylglycerol*; 2-Acylglycerol* 0.035 0.018 1:1 1:1

Glutaryl-CoA{ 0.007 0.015 0:2 0:2

Glycerol 0.020 0.001 1:1 1:1

Glycerol 3-phosphate 0.051 0.005 2:1 2:1

Lipoamide* 0.014 0.006 0:5 0:5

Phosphatidylinositol 0.017 0.128 1:5 1:5

trans-3-decenoyl-CoA* 0.026 0.076 0:2 0:2

ADP 0.047 0.174 16:31 20:27 Other

CO2 0.041 0.004 1:11 3:9

Coenzyme A{ 0.007 0.014 4:8 3 10

Creatine;Phosphocreatine{ 0.032 0.048 0:1 0:1

NAD+{; NADH{ 0.003 0.095 3:17 17:4

Trichloroethanol* 0.021 0.006 2:1 3:0

*Reporter metabolites identified using EHMN metabolic network.
{Reporter metabolites identified in both networks.
Reporter metabolites with p#0.05 in at least one of the comparisons showed in bold. Columns with enzyme neighbors show the number of up- and down-regulated
enzyme neighbors in the first condition (e.g. T2DM/FH2 up- and down-regulated in T2DM comparing with FH2). Reporter metabolites without marks were identified
using Recon1 metabolic network. Metabolites written in italics are known to be directly/indirectly related to T2DM, see main text and Table S8.
doi:10.1371/journal.pcbi.1000729.t002

Metabolic Regulatory Signatures of Type 2 Diabetes

PLoS Computational Biology | www.ploscompbiol.org 5 April 2010 | Volume 6 | Issue 4 | e1000729



up- or down-regulated neighboring genes (Materials and Methods).

Up- and down-regulated gene sets were then analyzed separately

in order to assess whether their promoter regions were enriched

for known transcription factor binding sequence motifs. P-values

for enrichment were estimated by using a hypergeometric test,

which compared the proportion of promoters from a given gene

set containing a particular motif with the frequency of occurrence

of that motif in promoter regions of all other metabolic genes.

Correction for multiple-testing was done by using q-value [29]

and motifs with q-value#0.05 were considered as significantly

enriched.

In accord with our hypothesis, several transcription factor

binding sites were overrepresented in the promoter regions of the

enzymes associated with reporter metabolites. A summary of the

main results from this analysis is illustrated in Figure 3A. Many

transcription factors were found to be common across the two case

studies (Figure 3B), albeit in connection with different reporter

metabolites. PPAR family motifs (PPARc and PPARa:RXRa)

were enriched in seven downregulated enzyme sets including ATP.

Tax/CREB motifs were enriched in promoters of downregulated

enzymes associated with ATP, ADP and phosphate. Additional

down-regulated neighbors of ATP were enriched for the binding

sites of NF-kB, MEF-2, UF1-H3b, Pax-9 and NKX6.2, while the

NRF-1 motif was enriched in the set of up-regulated enzymes

neighboring ADP. Another potential regulatory signature was

identified around the down-regulated neighbors of phosphatidy-

linositol and phosphatidylinositol 4,5-bisphospate (important

phospholipids which participate in insulin and other signaling

reactions), which were significantly enriched for binding sites of

p53, PPARc, SRF, SEF-1, v-Jun, GCNF, AR and many others

(Table S7). These and other highly connected reporter metabolites

in the metabolite-TF network (Figure 3A) demonstrate the concept

that associated metabolic pathways can be transcriptionally

regulated in multiple ways in response to environmental stimuli

or metabolic perturbation.

Discussion

Maintenance of whole-body glucose metabolism is reliant on a

delicately balanced dynamic interaction between tissue sensitivity to

insulin (including muscle, adipose and liver) and insulin secretion

[5,30]. Unfortunately, the molecular mechanisms responsible for

diabetes risk remain unknown. A key metabolic phenotype

associated with insulin resistance in humans is inappropriate lipid

accumulation in tissues outside of adipose tissue, suggesting defects

in fatty acid uptake, synthesis, and/or oxidation. With lipid excess

and/or impaired oxidation, as observed in obesity and/or inactivity,

flux of long-chain acyl CoAs (LC-CoA) may be redirected into

cytosolic lipid species such as diacylglycerols (DAG), triacylglycerols

(TG) and ceramides (derivatives of sphingosine and fatty acid

metabolism) [5] that are correlated with reductions in insulin

signaling and insulin resistance [3,21–23,31]. Whether alterations in

mitochondrial oxidative function in humans with insulin resistance

and diabetes contribute to, or are a consequence of these defects,

remains unclear [32].

Recognizing these important gaps in our knowledge of diabetes

pathophysiology, we have integrated transcriptomic data with

metabolic networks to systematically identify, in an unbiased

fashion, regulatory hot spots (reporter metabolites and associated

transcription factors) associated with insulin resistance and T2DM.

Our reporter metabolite results provide evidence for transcrip-

tional dysregulation of multiple metabolic pathways in skeletal

muscle. Interestingly, many of the reporter metabolites identified

in our analysis have been appreciated in prior experimental studies

in animal models (metabolites with italic font in Tables 1, 2 and

S8). A bird’s-eye view of selected metabolic and regulatory nodes

identified in our study is depicted in Figure 4.

Key metabolic regulatory nodes in T2DM pathogenesis
Lipid metabolism. In conditions of overnutrition and

physical inactivity, availability of cellular fatty acids stimulate

Figure 2. Hierarchical clustering of pair-wise comparisons within the Swedish male and Mexican-American datasets based on the
overlapping reporter metabolites (Recon1 model). Comparisons are colored according to the dataset; blue – Mexican-American; orange –
Swedish male dataset. A) Dendrogram of reporter metabolites identified in each of the comparisons based on Jaccard distance. B) Venn diagram
showing the overlap of the reporter metabolites identified in the different comparisons.
doi:10.1371/journal.pcbi.1000729.g002
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ligand–dependent PPARa/d transcription factors which, in turn,

induce transcription of genes responsible for b-oxidation [33,34].

Metabolic byproducts of incomplete b-oxidation, such as

acylcarnitines and reactive oxygen species, may accumulate in

mitochondria and contribute to insulin resistance [5]. Inter-

estingly, our analysis identified enrichment of PPAR family

transcription factor binding motifs in T2DM as compared with

insulin sensitive subjects, in both the Swedish and Mexican-

American datasets (T2DM vs NGT and T2DM vs FH2, re-

spectively). Moreover, reporter analysis revealed lipid metabolites

(Table S1), known to be natural ligands of PPARc (prostaglandins)

[34].

Another reporter metabolite identified in our analysis is

diacylglycerol (DAG), a lipid signaling molecule known to inversely

correlate with insulin sensitivity [3,21–23,31]. Our results suggest

that perturbations in DAG levels may be accompanied by changes

in the adjacent CDP-Choline branch of the Kennedy pathway of

phospholipid metabolism (Figure 4). Thus, DAG could potentially

affect insulin sensitivity via activation of serine/threonine kinases or

alterations in phospholipid membrane composition, both of which

could lead to defects in insulin signaling, reduced insulin-stimulated

glucose uptake, and glycogen synthesis – key metabolic features of

diabetes [5] (Figure 4). Together, identification of these lipid-linked

regulatory motifs and reporter metabolites known to be involved in

type 2 diabetes pathogenesis provides further support for the validity

of our approach.

Central carbon metabolism. Using our approach we found

several reporter metabolites from the TCA cycle (citrate, 2-

oxoglutarate, succinyl-CoA, fumarate and malate) (Figure 4). The

down-regulated genes associated with these metabolites support

the idea that TCA cycle and/or oxidative phosphorylation flux is

reduced in diabetes [9]. It is also interesting that ATP is one of the

reporter metabolites, as the majority of cellular ATP is generated via

respiration. Moreover, significant enrichment of binding motif for

NF-kb in the upregulated ATP neighbors is consistent with the

potential role of this transcription factor in mediating oxidative

stress responses triggered by by-products of incomplete b-oxidation

[35]. Another interesting finding is the enrichment of CREB family

and NRF-1 motifs in enzymes associated with ATP and ADP.

These results corroborate the role of CREB as an indirect regulator

of nuclear-encoded oxidative phosphorylation genes via PGC1-a
and other regulators linked to nuclear-encoded mitochondrial genes

(Figure 4) [9,36,37].

The appearance of highly connected metabolites, such as ATP

and NADH, among top-ranking reporter metabolites provides a

possible link to the observed network-wide transcriptional changes

in IGT and T2DM. Cellular levels of these co-factors are usually

constrained within relatively narrow ranges to maintain thermo-

dynamic stability. Oxidative phsophorylation, which is connected

to TCA cycle flux via succinate and fumarate, accounts for most of

the ATP (and NADH) turnover in a respiring cell. Our results

suggest reduction in the activity of both TCA cycle and oxidative

phosphorylation, in agreement with recent NMR data demon-

strating that mitochondrial ATP synthesis is reduced in humans

with insulin resistance [38–40]. Another major source of ATP and

NADH production in the cell is glycolysis. Reporter metabolites

representative of glycolysis (glucose, glucose-6-phosphate, glucose-

1-phosphate and pyruvate) also exhibited concordant down-

regulation of the neighboring genes.

The concordance between the changes in gene expression levels

for glycolysis, TCA cycle and oxidative phosphorylation in IGT

and T2DM suggests that transcriptional regulatory mechanisms

Figure 3. Summary of the main results from the motif enrichment analysis. A) Motif enrichment analysis for the genes associated with
reporter metabolites from the T2DM vs NGT comparison. Reporter metabolites with up-regulated neighboring gene set are shown as red circles,
whereas reporter metabolites with down-regulated neighboring gene set are represented as green circles. Transcription factor binding motifs (shown
as triangles) are colored according to the number of enzyme sets in which they are enriched, ranging from light yellow (enriched in few sets) to
orange (enriched in as many as 6 sets). Edges are scaled according to q-values signifying the confidence of the motif enrichment. B) Venn diagram
showing the overlap of transcription factor binding motifs across the comparisons of T2DM with non-T2DM cases. Comparisons are colored
according to the dataset; blue – Mexican-American; orange – Swedish male dataset.
doi:10.1371/journal.pcbi.1000729.g003

Metabolic Regulatory Signatures of Type 2 Diabetes

PLoS Computational Biology | www.ploscompbiol.org 7 April 2010 | Volume 6 | Issue 4 | e1000729



may be a response to altered levels of ATP/NADH. Such response

may achieve two purposes: (1) regulation of metabolism on global

scale, as these co-factors are critical components of many metabolic

pathways, and (2) regulation of NADH levels may help in reducing

excessive (and potentially deleterious) oxidative stress resulting from

sustained oxidation of excessive nutrients [41]. Although the way

such regulatory control is mechanistically linked to the correspond-

ing metabolites cannot be deduced from the gene expression data

alone, there are several examples where metabolite co-factors are

directly involved in regulating gene expression, e.g. NADH(/+)

dependent regulation of genes in gram-positive bacteria [42], yeast

[43–45] and human [46,47]. NAD+ dependent changes in gene

expression levels could also be mediated by the action of PGC-1a
and SIRT1 complex, which have important roles in regulation of

glucose homeostasis [48]. Additional regulatory links, between

glycolytic flux, energy metabolism, TCA cycle flux and fatty acid

metabolism are also known in other eukaryotic systems such as

baker’s yeast [49–51]. Furthermore, several of the enzymes from

central carbon metabolism may be regulated to a large extent at the

post-transcriptional level [52,53]. Parallels of such regulatory

Figure 4. Metabolic and regulatory signatures of type 2 diabetes. Key metabolic and regulatory pathways associated with reporter
metabolites identified in this study (T2DM vs NGT and T2DM vs FH2 comparisons) are shown. Metabolites in bold black font are reporter metabolites.
Grey shapes and arrows represent facts/hypotheses from previous studies and are not directly based on the results from the present study. Broken
lines imply indirect effect while full lines denote direct effect. Chronic overfeeding and physical inactivity increase the influx of fatty acid, which
promotes b-oxidation through the activation of PPARa/d-mediated genes, without coordinated increase in TCA cycle flux. Reporter analysis supports
this idea by showing the decreased activity in TCA cycle enzymes associated with reporter metabolites. Eventually, this leads to mitochondrial
accumulation of metabolic by-products of incomplete b-oxidation (acylcarnitines ROS). These stresses might lead to mitochondrial overload which
together with intracellular lipid-signaling (such as DAG) molecules might trigger serine a serine/threonine (Ser/Thr) kinase (Ser/Thr) cascade initiated
by nPKCs. As a result, Ser/Thr phosphorylation of insulin receptor substrate 1 (IRS-1) sites is induced, thereby inhibiting IRS-1 tyrosine phosphorylation
and activation of PI 3-kinase, resulting in impeded GLUT4 translocation, reduced glucose transpor, and decreased glycogen synthesis. Increased
physical activity/fasting activates PGC1a and CREB (a potent inducer of PGC-1a). These actions combat lipid stress by increasing TCA cycle flux and by
coupling ligand-induced PPARa/d activity with PGC1a-mediated remodeling of downstream metabolic pathways such as respiration and b-oxidation.
CDP-choline, cytidine diphosphate choline; DAG, diacylglycerol; G1P, glucose 1-phosphate; G6P, glucose 6-phosphate; GLUT4, glucose transporter-4;
GSK3, glycogen synthase kinase-3; IRE1, inositol requiring kinase-1; LC-CoAs, long-chain acyl CoAs; nPKCs, novel protein kinase Cs; PA, phosphatidate;
PGC1a, PPARc co-activator-1a; PH, pleckstrin homology domain;PI, phospatidylinositol; PIP, phospatidylinositol 4-phospate; PIP2, phosphatidyli-
nositol 4,5-bisphospate, PIP3, phospatidylinositol 3,4,5-trisphospate; PI 3-kinase, phosphoinositol 3-kinase; PPARc, peroxisome proliferator-activated
receptor-c; PTB, phosphotyrosine binding domain; ROS, reactive oxygen species; RXR, retinoid X receptor; SH2, src homology domain; TCA,
tricarboxylic acid cycle; TF, transcription factor; CPT1, carnitine palmitoyltransferase-1; PTDETN, phosphatidylethanolamine.
doi:10.1371/journal.pcbi.1000729.g004
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circuits in human cells may be discovered in the future with the

here-identified transcription factors (Table S7) as one of the starting

points.

Other pathways. Metabolites involved in protein and lipid

glycosylation were found as reporters and characterized by down-

regulation of neighboring enzymes (Table S2). Alterations in

glycosylation may ultimately cause misfolding of several proteins, a

feature previously associated with over-nutrition in hepatocytes [5].

Another reporter metabolite, shared by T2DM vs NGT and T2DM vs

FH2 comparison, is trichloroethanol, a metabolite in the cytochrome

P450-mediated pathway derived from trichlorethene [54]. Although

tricholoethanol or tricholoethene is not an endogenous metabolite in

human tissues, it appears that the expression of the cytochrome P450

is altered in T2DM. Interestingly, experimental evidence shows that

mouse exposure to trichlorethene leads to PPARa activation and the

reprogramming of gene expression, resulting in induction of enzymes

mediating b- and v-oxidation of fatty acids, and increased expression

of genes involved in lipid metabolism [55], a pattern similar to the

T2DM metabolic phenotype [3].

Reporter metabolites and macroscopic physiological
parameters

The identification of reporter metabolites from glycolysis and

energy-generation pathways suggests that there may be regulation of

certain physiological parameters, such as glucose uptake, at the

transcriptional level of the corresponding metabolic pathways. To

investigate the extent of such possible regulation, we calculated

Pearson correlation coefficients between insulin sensitivity (as

measured by either whole-body glucose uptake during the

hyperinsulinemic euglycemic clamp or insulin levels achieved during

the OGTT) and mean centroid expression levels of genes

surrounding reporter metabolites (Swedish dataset) (Materials and

methods). A significant linear correlation with whole-body glucose

uptake was observed for several reporter metabolites. In most cases,

the correlation was significant only for one of the conditions (NGT,

IGT or T2DM). For example, significant correlation of transcrip-

tional regulation around dUDP with glucose uptake was found only

for NGT samples (Figure 5A). It appears that this potential

connection is de-linked under IGT and T2DM conditions. Another

example is 1-Phosphatidyl-1D-myo-inositol 3-phosphate (Figure 5B),

where significant correlation is observed with insulin level only for

IGT. Further investigation of the causal mechanisms behind these

observed correlation patterns may help in elucidating the regulatory

role of the reporter metabolites in diabetes pathogenesis.

Potential biomarkers and pharmacological targets
A key scientific and clinical challenge is to identify molecular

markers of diabetes risk, not only to better understand disease

pathophysiology, but also to develop novel therapies for

prevention and treatment of established diabetes. In this context,

it is interesting that our analysis identified both PPARc and its

potential lipid ligands as regulatory molecules, since PPARc ligand

thiazolidinediones are currently employed as effective therapy for

diabetes. We hypothesize that some transcriptional pathways

identified in the current analysis, including CREB, NRF-1 and

SRF, may be additional novel molecular mediators of the

transcriptomic phenotype associated with insulin resistance, and

thus potential targets for future intervention strategies. Of course,

the potential roles of these pathways will require additional testing

in cultured cells and animal models, where their impact on

metabolic flux and insulin sensitivity can be fully assessed.

Similarly, reporter metabolites identified in our analysis represent

molecules likely to be involved in human skeletal muscle insulin

resistance phenoytpes and also novel candidate biomarkers of

insulin resistance and diabetes risk. In support of this hypothesis,

several of the identified metabolites have known physiological roles

in T2DM (Table S8 and Discussion above). Additional molecules

have been analyzed either in rodents and/or in other tissues (Table

S8) and thus, their appearance as reporter metabolites also strongly

implicates their involvement in insulin resistance in human skeletal

muscle. Some of the novel metabolites identified in our analysis,

including glycolytic and fatty acid oxidation intermediates, are

known targets of metformin, a compound effective for diabetes

therapy and prevention (Figure 4). We also identified an interesting

link between DAG, a reporter metabolite for T2DM, and the CDP-

choline branch of the Kennedy pathway of phospholipid metabo-

lism (Figure 4). This pathway has been implicated in cancer

development and is being established as anti-tumor drug target

[56,57]. Changes in phospholipid metabolism are known to affect

the properties of cellular membranes, and subsequently signaling

through membrane proteins. Further investigation of the role of

phospholipids in T2DM pathogenesis may provide clues to some of

the missing links that connect metabolic flux changes with insulin

signaling in skeletal muscle cells.

Figure 5. Correlation of glucose uptake and insulin level with mean centroid expression levels of reporter metabolite neighbor
genes (Swedish male dataset). M value – whole-body glucose uptake during the hyperinsulinemic euglycemic clamp, Insulin 120 min – insulin
levels achieved at the two hour time point of oral glucose tolerance test.
doi:10.1371/journal.pcbi.1000729.g005
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Supplementary tables S1, S2, S3, S4 list additional reporter

metabolites which are, to our knowledge, not (directly) linked with

any of the known metabolic players in T2DM. Our analysis

nevertheless suggests them as potential nodes of disruption or as

biomarkers. Measurement of the intramyocellular concentration of

the reporter metabolites in patients with diabetes risk may help to

confirm the role of these metabolites in insulin resistance.

Metabolic hubs as reporters
A particularly interesting finding from our analysis is the

identification of highly connected metabolites as reporters,

including ATP/ADP and NAD+/NADH. We hypothesize that

diverse environmental and genetic risk factors result in insulin

resistance when individuals are unable to mediate appropriate

compensatory transcriptional and metabolic responses in other

parts of the network connected by these hubs. Our results also

suggest that alterations in gene expression linked to the highly

connected co-factors are likely to be acquired features of

established T2DM. Analysis of the transcriptional activity of

CREB in the context of ATP concentrations and TCA cycle

activity in skeletal muscle may help to elucidate regulatory

mechanisms leading to these changes.

Constraints and extension of methodology
Reconstructed human metabolic network models are still

evolving, incomplete, and subject to error. Well-annotated

pathways such as central carbon metabolism are thereby likely

to be over-represented in the reporter analysis. In order to partially

compensate for this limitation, we used two reconstructions –

Recon1 and EHMN. As network reconstructions will become

more complete, it will be possible to better assess the extent of this

limitation. Another essential input to our algorithm, in addition to

metabolic network, is gene expression data for the genes

represented in the network. We would like to note that neither

EHMN nor Recon1 network genes were fully represented by the

microarray chips used in the two case studies (Text S1). Only 54%

and 39% genes from the Recon1 and EHMN, respectively, were

represented on the chips used in Mexican-American case study,

while this coverage was 85% and 60% in Swedish case study.

Interestingly, re-analysis of the Swedish Male dataset by using only

a subset of genes from the HG-U133A chip that were represented

also on the HuGeneFL (used in Mexican-American case study)

showed a large overlap between the two reporter metabolite sets

thus obtained (86% for T2DM vs NGT comparison and 69% for

the rest). The details of this analysis, together with relevant

statistical considerations, can be found in Text S1.

Although the present analysis identified common metabolic and

regulatory signatures across the two studies, there are several

differences in the study designs, and therefore the results must be

regarded with certain caution. In addition to relatively low

number of subjects in Mexican-American study, the differences

include fasting state biopsies in Mexican-American study vs post

insulin stimulation biopsies in Swedish study. Furthermore, the age

and BMI (Body Mass Index) of the individuals participating in the

two studies were different and may contribute to the differences in

the observed gene expression patterns. To our knowledge, these

two case studies represent the only human skeletal muscle

transcriptome datasets that were available at the time of here

reported computational analysis. Analysis of new datasets which

may become available in the future will be useful in obtaining

further insight into molecular physiology of skeletal muscle in the

context of T2DM. Moreover, emergence of better or new gene

expression analysis tools will help to cover parts of metabolic

network that are currently inaccessible due to the lack of data.

Extension of the analysis to discover more global regulatory

patterns by using additional bio-molecular interaction data [58]

such as protein-DNA and protein-protein interactions will definitely

be an important step in obtaining a higher resolution picture of

T2DM metabolic phenotypes. Availability of such interaction data

at the high confidence level of metabolic interactions is the current

major bottleneck. Another essential extension of the methodology

will require the use of thermodynamic data for metabolic reactions

[59–61]. Moreover, since mRNA levels do not necessarily correlate

with the protein levels, incorporation of the proteomics data

together with the thermodynamic data will allow more accurate

interpretation of the reporter metabolites in terms of implications

for flux and concentration changes.

Conclusions
We demonstrate the use of a network-guided data integration

approach to discover key, physiologically relevant metabolic and

regulatory nodes in T2DM pathogenesis. The methodology does

not require the use of a priori disease-specific knowledge regarding

the involvement of specific pathways or metabolites, thereby making

it a robust and unbiased analytical framework for studying diseases

linked to perturbations in the cellular metabolic network. Our

results identify the highly connected metabolites ATP and NAD+ as

reporters and potential mediators of the widespread changes in gene

expression linked to insulin resistance in muscle. Moreover, our

results extend previous knowledge about T2DM pathogenesis at the

gene expression level – by reporting additional potential sites of

disruption, e.g., TCA cycle and Kennedy pathway of phospholipid

metabolism. Several metabolites from other pathways were also

found to display significant differential gene expression of the genes

around them and we suggest putative regulatory mechanisms

behind these alterations. Our results suggest a framework of

metabolic disruption observed with insulin resistance and diabetes,

which can be used to test the role of specific pathways in mediating

disease pathophysiology, and more practically, for the identification

of potential biomarkers for preventive and therapeutic monitoring.

Materials and Methods

Gene expression and sequence data
Two datasets used in the study were obtained from the Diabetes

Genome Anatomy Project website (http://www.diabetesgenome.

org). Brief comparison of microarray platforms from the

experimental studies [8,9] used in the current work is presented

in the Text S1. Promoter sequences for all genes were obtained

from the Ensembl Biomart (http://www.ensembl.org/biomart).

The transcriptional start sites (TSSs) were identified based on the

annotation of the Ensembl Biomart sequences. Sequences in the

2800 to 200 base pairs region of the TSS were deemed as

promoter regions for the analysis. Interspersed repeats and low

complexity DNA sequences were masked out.

Metabolic networks
Two reconstructions of human metabolic network, viz., Recon1

[19] and EHMN [62] were used in this study. The Homo Sapiens

Recon1 is a comprehensive literature-based metabolic network

reconstruction that accounts for the functions of 1496 ORFs, 2004

proteins, 2766 metabolites and 3311 metabolic and transport

reactions. The ENMN (Edinburgh Human Metabolic Model) is a

network reconstructed by integrating genome annotation information

from different databases and metabolic reaction information from the

literature. The network contains nearly 3000 metabolic reactions,

which were reorganized into about 70 human-specific pathways

according to their functional relationships. The two models mainly
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differ in the coverage of reactions and in the accounting of

compartmentalization and inter-organelle transport reactions.

Significance of differential gene expression
Preprocessing of the gene expression data was carried out by using

the statistical software environment – R (www.r-project.org). The

probe intensities were obtained and corrected for background by

using robust multi-array average method (RMA) [63] with only

perfect-match (PM) probes. Normalization was performed by using

the quantiles algorithm. Gene expression values were calculated from

the PM probes with the median polish summarization method [63].

All data preprocessing methods were used by invoking them through

the affy package [64] by using rma function. Significance of the

differential expression was calculated by using the empirical Bayes

test [65]. The probe-sets were grouped into genes, and to each gene

the differential expression was defined by choosing the value from the

top level probe-set (using the probe-set rank defined by Affymetrix).

In case of more than one probe-set present at the top level, the

median value was used.

Reporter metabolites
Each metabolite in the metabolic network was scored based on

the scores of its k neighbor enzymes (i.e. enzymes catalyzing

reactions involving that metabolite, either as a substrate or as a

product). Each enzyme was assigned with a p-value for differential

expression based on the p-value of the gene encoding for that

enzyme. In case of isozymes and enzyme-complexes, genes with

most significant expression change were used to score the enzyme

(Figure 1). P-values of genes pi, indicating the significance of

differential expression, were converted to Z-scores Zi by using the

inverse normal cumulative distribution function (CDF) (h{1):

Zi~ h{1 1{pið Þ. All metabolite nodes were assigned a Z-score,

Zmetabolite, calculated as aggregated Z scores of the k neighbor

enzymes: Zmetabolite~
1

k

X
Zni. Zmetabolite scores were then corrected

for the background distribution by subtracting the mean (mk) and

dividing by the standard deviation (sk) of the aggregated Z scores

derived by sampling 10000 sets of k enzymes from the network:

Zcorrected
metabolite~

Zmetabolite{mkð Þ
sk

. Corrected Z-scores were then trans-

formed to p-values by using CDF. Metabolites with p-values less

than 0.05 were deemed as reporter metabolites. Detailed informa-

tion on the reporter scoring can be found in the Text S1 and [14].

Transcription factor binding site enrichment
For all reporter metabolites, we assessed enrichment of known

protein-binding sequence motifs in the promoter regions (2800 to

200 base pairs relative to the transcription start site) of the

corresponding neighbor genes. In order to obtain robust results,

we only considered sets consisting of at least 5 up- or down-

regulated genes. For each reporter metabolite, the sequences of all

enzyme neighbors were used as the positive sequence set, whereas

all other enzymes in the network model were used as the negative

(background) set. Known motifs were identified by using position

frequency matrices of all known motifs stored in the TRANSFAC

database [66]. The motif enrichment analysis tool ASAP [67] was

used to scan all TRANSFAC motif matrices against the positive

sequence sets of each reporter metabolite. The negative sequence

sets were used together with 2nd order background model. A one-

tailed Fisher’s exact test was used to assess per-sequence over-

representation of any known motif, and the threshold used to

calculate significance for each TRANSFAC matrix was set to 70%

of the highest-scoring sequence motif. The q-value cut-off criteria

[29] was used as a post-data measure of statistical significance of all

motifs found to be significantly enriched.

Supporting Information

Text S1 Supporting text describing scoring methodology and

datasets.

Found at: doi:10.1371/journal.pcbi.1000729.s001 (0.74 MB PDF)

Table S1 Reporter metabolites for Swedish male dataset

(Recon1).

Found at: doi:10.1371/journal.pcbi.1000729.s002 (0.05 MB XLS)

Table S2 Reporter metabolites for Swedish male dataset

(EHMN).

Found at: doi:10.1371/journal.pcbi.1000729.s003 (0.07 MB XLS)

Table S3 Reporter metabolites for Mexican-American dataset

(Recon1).

Found at: doi:10.1371/journal.pcbi.1000729.s004 (0.03 MB XLS)

Table S4 Reporter metabolites for Mexican-American dataset

(EHMN).

Found at: doi:10.1371/journal.pcbi.1000729.s005 (0.05 MB XLS)

Table S5 Overlapping reporter metabolites between two case

studies (Recon1).

Found at: doi:10.1371/journal.pcbi.1000729.s006 (0.05 MB XLS)

Table S6 Overlapping reporter metabolites between two case

studies (EHMN).

Found at: doi:10.1371/journal.pcbi.1000729.s007 (0.06 MB XLS)

Table S7 Results of the motif enrichment analysis.

Found at: doi:10.1371/journal.pcbi.1000729.s008 (0.03 MB PDF)

Table S8 Experimentally studies linking metabolite levels to

T2DM pathophysiology

Found at: doi:10.1371/journal.pcbi.1000729.s009 (0.12 MB PDF)

Figure S1 Hierarchical clustering of pair-wise comparisons

within the Swedish male and Mexican-American datasets based

on the overlapping reporter metabolites (EHMN network).

Found at: doi:10.1371/journal.pcbi.1000729.s010 (0.21 MB TIF)
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. Paper V - Predicting -month weight maintenance

In the following paper we studied a subset of subjects from the DiOGenes cohort who
successfullymaintainedweight loss aer a calorie restricted diet (henceforth referred to
as weight maintainers) and subjects who regained the weight they lost aer the calorie
restricted diet (henceforth referred to as weight regainers). To accomplish this, we
examined subcutaneous adipose tissue gene expression and bioclinical markers before
and aer an -week low calorie diet.

We applied the Reporter Metabolite Analysis (described in Paper IV) to adipose
tissue gene expression profiles, and found that genes coordinating the regulation of
fatty acid metabolism, citric acid cycle, oxidative phosphorylation, and apoptosis were
regulated differently by the low calorie diet in weightmaintainers andweight regainers.

An interesting finding was, that the reporter metabolites reported in Paper V re-
semble our findings from the analysis of the energy restriction phase in the Chapel et
al study [Capel et al., ]. It demonstrates how results obtained at the pathway-level
(the metabolite level) may result in more robust findings across studies, than analysis
accomplished at the gene level. At the gene level, both studies indeed showed no cor-
relation in genes' differential expression levels at all (Tab. ., second column). In
contrast, reporter metabolite p-values between both studies were moderately correl-
ated (Tab. ., third column).

Chapel et al energy restriction phase [Capel et al., ]

Correlation at the
gene level

Correlation at the
reporter metabolite
level

Weight maintainer . .

Weight regainer . .

Table .: Correlation at the gene- and reporter metabolite level between the energy
restriction phase in the Mutch et al analysis (Paper V) and Chapel et al analysis [Capel
et al., ]. Whereas the Spearman correlation coefficients calculated between the two
studies is close to zero when based on differential gene expression levels, the correla-
tion coefficients are stronger (moderate correlation) when calculated based on reporter
metabolites' p-values. e increase in correlation confirms the premise that systems-
based approaches enhance the resemblance in findings between studies (given the find-
ings are likely to be true).

DiOGenes stands for "Diet, Obesity and Genes" and more information is found on www.diogenes-
eu.org.


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Abstract 
Background: Weight loss has been shown to reduce risk factors associated with cardiovascular disease and 
diabetes; however, the successful maintenance of weight loss continues to pose a major challenge. 
Objective: The present study was designed to assess whether changes in subcutaneous adipose tissue (scAT) 
gene expression during a low calorie diet (LCD) could be used to differentiate and predict subjects who 
experience successful short-term weight maintenance from subjects who experience weight regain. 
Design: Forty Caucasian women followed a dietary protocol consisting of an 8-week LCD phase followed by a 
6-month weight maintenance phase. Participants were classified as weight maintainers (WM; 0-10% weight 
regain) and weight regainers (WR; 50-100% weight regain) by considering changes in body weight during the 
two phases. Anthropometric measurements, bio-clinical parameters, and scAT gene expression were studied in 
all individuals before and after the LCD. Energy intake was monitored during both phases of the protocol. 
Results: The LCD resulted in significant decreases in several plasma parameters, such as triglyceride and insulin 
levels, in WM compared to WR. WR experienced no changes in insulin secretion in response to an oral glucose 
tolerance test after the LCD, whereas WM had a significant decrease in insulin secretion after the LCD. An 
ANOVA analysis of scAT gene expression revealed that genes coordinating the regulation of fatty acid 
metabolism, citric acid cycle, oxidative phosphorylation, and apoptosis were regulated differently by the LCD in 
WM and WR subjects.  
Conclusion: This study suggests that LCD-induced changes in insulin secretion and scAT gene expression may 
have potential to predict successful short-term weight maintenance. 
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Introduction 
 

Obesity is associated with an increased risk of cardiovascular disease, diabetes, metabolic syndrome, 
and a number of cancers; however, weight loss of 5-10% has repeatedly been shown to convey modest to 
significant reductions in the risk of these downstream complications (1). The most common strategy to promote 
weight loss in obesity involves modifying lifestyle via changes in dietary and exercise habits. Although reduced 
caloric intake and increased physical activity favour a reduction in body weight, body fat mass, and 
improvements in metabolic parameters, one of the greatest difficulties for obesity management is weight 
maintenance after successful weight loss.  

Several meta-analyses have revealed that energy restriction and/or increased physical activity can lead 
to successful short-term weight loss; however, the long-term effectiveness of these interventions appears 
challenging (2, 3). Numerous factors have been shown to influence successful weight maintenance, including 
behaviour (4), physical activity (2), eating habits (5), the length of time an individual has maintained weight loss 
(6), the degree of energy deficit and consequent weight loss (3, 7), and the influence of altering dietary 
macronutrient content (i.e. carbohydrate, protein, and fat) (8-11). It is now widely accepted that body weight and 
body composition are also influenced by a genetic component (which encompasses genetic polymorphisms, 
epigenetics, and gene transcription); however, our understanding of how these genetic determinants contribute to 
successful weight maintenance remains limited (12). 

Diet-induced weight loss in overweight/obese individuals decreases the expression of genes associated 
with polyunsaturated fatty acid metabolism, inflammation, and cell death, as well as modifying the expression of 
genes encoding components of the extracellular matrix (13-17). Previous attempts to predict an individual’s 
response (i.e. high vs. low weight loss) using only subcutaneous adipose tissue (scAT) gene expression profiles 
appear limited, suggesting that alternate approaches may be required to improve prediction accuracy (18, 19).  

Studying changes in gene expression has provided novel insight to help clarify the molecular basis for 
the metabolic improvements associated with diet-induced weight loss. For example, Capel et al highlighted the 
interplay between immune cells and adipocytes during the various phases of a weight loss program (caloric 
restriction and weight stabilization) by monitoring scAT gene expression profiles (20). Recently, Márquez-
Quiñones et al focused on the weight maintenance phase of the DiOGenes study and found that unsuccessful 
participants (i.e. subjects who regained weight following a low calorie diet (LCD) phase) had an increased 
expression of genes related to cellular growth and differentiation (11).  

The present study was designed to further contribute to our understanding of the inter-individual 
variability regarding successful weight maintenance by determining whether scAT gene expression profiles 
during an LCD can be used to differentiate and predict subjects who experience successful short-term weight 
maintenance from participants who experience weight regain. This study provides important knowledge that may 
prove beneficial in the long-term for the development of personalized strategies to improve successful weight 
maintenance. 
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Materials and Methods 
 
Dietary Intervention Study: This study is part of the European Framework project entitled Diet, Obesity, and 
Genes (DiOGenes). For a thorough description of the overall objective and goals of this dietary intervention, 
please see Larsen et al (21) and Moore et al (22). Briefly, the project consisted of two phases: an initial weight 
loss phase and a 6-month weight maintenance phase. 932 overweight and obese Caucasian adults were recruited 
from across 8 European countries in order to study the effects of dietary macronutrients on weight regain and 
cardiovascular risk factors. Inclusion and exclusion criteria for study participation were outlined previously (21). 
Of relevance to the current study, all subjects were weight stable (<3 kg change in body weight) during the 2 
month period prior to initiating the study. The initial weight loss phase consisted of an 8 week low calorie diet 
(LCD; 3300 kJ/d; ~800 kcal; Modifast®, Nutrition et Santé, Revel, France). Only those participants that 
achieved the targeted weight loss (≥ 8% of initial body weight) were invited to continue the protocol. Subjects 
were randomized to the weight maintenance phase as described (21). During this weight maintenance phase, 
participants consumed ad libitum one of four low-fat (20-25% energy intake) diets that differed in glycemic 
index (GI) and protein content (P) (23). More specifically subjects adhered to one of the following diets: low GI 
(LGI)/low P (LP), high GI (HGI)/LP, LGI/high P (HP), or HGI/HP. Target energy intakes in the LP diets were 
10-15% protein and 57-62% carbohydrates, and in the HP diets were 23-28% protein and 45-50% carbohydrates. 
The goal was to achieve a difference of approximately 15 GI points between the LGI and HGI diets. During this 
weight maintenance period subjects met with a dietitian at regular intervals.  
 
Ethics: The study was approved by local Ethics committees in the various countries. The protocol was in 
accordance with the Declaration of Helsinki. All study participants provided written consent. 
 
Blood Sampling: Fasting blood samples were obtained at each of the three clinical investigation days (CIDs) for 
the analysis of blood metabolites, as outlined in Larsen et al (21). An oral glucose tolerance test (OGTT) lasting 
120 minutes was also performed at each CID following the consumption of 75 g of glucose.  
 
Subject Selection: Of the 548 subjects that completed the entire dietary protocol, a subset of 227 women were 
selected according to the following criteria: age between 20-50 years, non-diabetic (fasting glucose ≤ 7 mmol/L), 
non-dyslipidemic (fasting total cholesterol ≤ 7 mmol/L and fasting triglycerides ≤ 3.6 mmol/L), availability of a 
fat biopsy at the required time points, and a complete clinical evaluation during the protocol 
(SUPPLEMENTARY FIGURE 1). Data at the three distinct time points was necessary: CID1 (prior to 
commencing the LCD), CID2 (at the end of the LCD phase), and CID3 (at the end of the 6-month weight 
maintenance phase) (21).  

Previously, Márquez-Quiñones et al reported negligible differences in scAT expression profiles 
between participants in the various weight maintenance diets; therefore subjects in the four different dietary 
branches were considered all together (see (11)). Subjects were classified according to changes in body weight 
during the weight maintenance period, which was expressed as a % of weight lost during the LCD period. 
Subjects who experienced between 0-10% and 50-100% weight regain during the weight maintenance period 
were classified as “weight maintainers” (WM) and “weight regainers” (WR), respectively. Of the 227 women 
available, a subset of twenty subjects were randomly selected for each group and matched for the following bio-
clinical variables at both CID1 and CID2 time points: body weight (kg), body mass index (BMI), total energy 
intake (kJ/d), and  glucose (mmol/L), insulin (µIU/ml), and insulin resistance (HOMA-IR), and fasting 
cholesterol (mmol/L), triglycerides (mmol/L), HDL-cholesterol (mmol/L), fructosamin (µmol/L), C-reactive 
protein (CRP; mg/L), and adiponectin (µg/mL). It is noteworthy to mention that WM and WR subjects were not 
individually matched, but rather it was the WM and WR groups as a whole that were matched (i.e. using average 
values for each bio-clinical variable). 
 
Sample preparation and microarray analysis: Subcutaneous adipose tissue (scAT) samples from the 
periumbilical area were obtained by needle aspiration under local anaesthesia after an overnight fast at each of 
the time points. For the present prediction study only biopsies at CID1 and CID2 were required. All procedures 
were standardized between study centres across Europe and biopsy samples were stored at -80°C until analysis. 
Total RNA was extracted using the RNeasy total RNA Mini kit (Qiagen, Courtaboeuf, France). Total RNA 
concentration and quality was confirmed using the Agilent 2100 Bioanalyzer (Agilent Technologies, Massy, 
France). 200 ng of total RNA from each sample was amplified and transcribed into fluorescent cRNA using 
Agilent's Low RNA Input Linear Amplification kit (Agilent Technologies, Massy, France). Cyanine-5 dye was 
incorporated into all scAT samples, while the reference pool was labelled with cyanine-3 dye. The reference 
pool consisted of a commercial mix of human liver, adipose tissue, heart, intestine, and skeletal muscle RNA 
(AMBION/Applied Biosystems, les Ulis, France). A total of 80 samples (40 paired samples from CID1 and 
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CID2) were randomly hybridized to Agilent 4x44K whole human genome microarrays, which are comprised of 
over 41,000 unique 60-mer oligonucleotide human sequences and transcripts. Sample preparation, hybridization, 
and microarray washing were performed according to manufacturer’s recommendations (Agilent Technologies, 
Massy, France). Arrays were scanned using a GenePix 4000A Scanner (Axon Instruments-Molecular Devices, 
Sunnyvale, CA). The complete dataset is available in the NCBI Omnibus (http://www.ncbi.nlm.nih.gov/geo/) 
through the following series accession number: GSE24432. 
 
Real time RT-PCR analysis: A subset of genes were validated by real-time reverse 
transcriptase PCR (RT–PCR) in 17 WM and 17 WR (sufficient RNA was not available for all 40 subjects). 
Reverse transcription was performed with 0.5 mg of total RNA and random hexamer primers, according to 
manufacturer’s instructions (Promega, Charbonnieres-les-Bains, France). RT–PCR amplification was performed 
using an ABI 7300 (Applied Biosystems, Foster City, CA, USA) with the following thermal cycling conditions: 
2 min at 50ºC, 10 min at 95ºC, followed by 40 cycles of 95ºC for 15 s and 60ºC for 1 min for denaturation, 
annealing and elongation. All samples were normalized to 18S gene expression (18S rRNA Control kit; 
Eurogentec, Seraing, Belgium). Differences in gene expression were assessed using a two-tailed, homoscedastic 
Student’s t-test. Specific primers and probes were designed using Universal ProbeLibrary Assay Design Center 
by Roche Applied Science (https://www.roche-applied-science.com). 
 
Statistical analyses: Changes in bio-clinical and anthropometric parameters between groups (WM versus WR) 
and between times (CID1 versus CID2) were analyzed using JMP Genomics Version 4.1 platform (SAS, Cary, 
NC, USA). An ANOVA model was generated and least square means were estimated for the differences 
between groups, times, and the interaction between group and time (group*time), taking into account repeated 
measurements for all subjects. A post-hoc student’s T-test was used to determine significance in specific pair-
wise analyses. The area under the curve (AUC) was calculated using the trapezoid rule for both glucose and 
insulin response to the 120 minute OGTT. All data is presented as mean ± SEM.  

Microarray normalization was carried out by subtracting the median intensity background signal prior 
to intra-slide Loess normalization of log-transformed data (Goulphar Version 1.1.3 package (24)). All data was 
then uploaded into the JMP Genomics Version 4.1 platform (SAS, Cary, NC, USA) and further normalized using 
a quantile inter-slide intensity method. Multiple probes corresponding to the same gene were averaged to provide 
a single value for each GeneID per microarray. An ANOVA model was created using group (WM, WR), time 
(CID1, CID2) and the interaction between group and time (group*time) as fixed effects. Because each of the 40 
individuals provided a biopsy at both time points, the model included subjects as a random effect. Least square 
means were estimated for the difference between groups, times, and group*time. A false discovery rate (FDR) of 
0.01 was used to account for multiple testing. 
 
FunNet analysis: The functional analysis of gene expression data was performed using FunNet (25). FunNet 
identifies Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathways overrepresented in gene 
expression data lists while accounting for tests of multiplicity (FDR=0.05). Four lists of significant GeneIDs 
were obtained from the ANOVA analysis and used for the functional analyses: 1) Weight Maintainers, which 
corresponded to genes up- and down-regulated by the LCD that were identified in WM subjects only, 2) Weight 
Regainers, which corresponded to genes up- and down-regulated by the LCD that were identified in WR subjects 
only, 3) directional concordance (DC), which corresponded to genes up- and down-regulated by the LCD that 
were identified in both WM and WR subjects, and 4) oppositely regulated (OPP), which corresponded to genes 
that were regulated in both WM and WR subjects during the LCD, but in an opposite manner. More specifically, 
up-regulated pathways correspond to those genes up-regulated in WR and down-regulated in WM, while down-
regulated pathways correspond to those genes down-regulated in WR and up-regulated in WM. 
 
Reporter Metabolite Analysis: The global predictive analysis of enzyme-induced transcriptional changes on 
metabolite concentrations was performed by Reporter Metabolite Analysis (26, 27) based on the Edinburgh 
human metabolic network (EHMN) reconstruction, which represents a high-confidence reconstructed network of 
metabolism (28). The metabolic reconstruction forms a bipartite network containing two kinds of nodes, 
enzymes and metabolites. A metabolite is connected to an enzyme if it is catalyzed (i.e. produced or consumed) 
by that particular enzyme. Therefore metabolites will only be linked to enzymes and never to each other, while 
enzymes will only be linked to metabolites and never to each other. The reporter metabolite algorithm relies on a 
rigorous statistical framework to identify metabolite nodes that are enriched in differentially expressed 
enzymatic genes among their connected enzyme nodes. We compared our results with those previously reported 
by Capel et al (20). Note that although the EHMN metabolic network was used in both studies, the number of 
enzymes detected in each network differed because the quality control measures applied to the gene expression 
data were not identical. The present analysis covered 1860 enzymes (80% of the EHMN metabolic network), 
2166 metabolic reactions (76%), and 2225 metabolites in EHMN. See Supplementary Table 1 for the EHMN 
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coverage for the Capel et al analysis (20). The reporter metabolite figures were generated using Cytoscape 2.7.0 
software (29). 
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Results 
 
Anthropometric and bio-clinical data 
 

Subjects were classified into WM or WR groups according to the percentage weight regain during the 
6-month weight maintenance phase, where WM and WR corresponded to participants who regained between 0-
10% and 50-100% of the weight lost after the LCD, respectively (FIGURE 1). Importantly, WM and WR 
groups were established by ensuring there was no difference at CID1 (baseline) or CID2 (after the LCD) for the 
anthropometric and bio-clinical parameters listed in TABLE 1. All subjects lost a minimum of 8% of their initial 
body weight during the LCD phase. Energy restriction led to significant decreases in body weight, BMI, 
cholesterol, glucose, and insulin in both WM and WR subjects (TABLE 1). HDL-cholesterol, adiponectin, CRP, 
fructosamin, and HOMA-IR were not significantly changed by the LCD in either group.  

Circulating triglyceride levels were significantly reduced after the LCD in WM only (CID1  1.3 ± 0.1 
mmol/L; CID2  1.0 ± 0.1 mmol/L, p=0.0007). This change appeared to be specific to WM subjects, as no 
significant difference was observed in WR subjects. This group-specific effect is further implied by the 
borderline significant differences (p=0.0627) in the group*time interaction analysis. Reductions in fasting insulin 
after the LCD appeared more significant in WM (WM: CID1  11.8 ± 1.1 µIU/mL; CID2  6.7 ± 0.7 µIU/mL, 
P < 0.0001) than WR subjects (CID1  8.9 ± 0.7 µIU/mL; CID2  6.2 ± 0.6 µIU/mL, P = 0.0004). Significant 
group-specific changes in fasting insulin were identified by the group*time interaction analysis (p=0.0459) 
(TABLE 1). 

 
Energy intake during the protocol 

Energy intake in all subjects was assessed at CID1, CID2, and CID3 using three day dietary records. 
Energy intake during the LCD was fixed at 3300 kJ/d for all study participants. While energy intake decreased 
significantly from CID1 to CID2 in both groups, there was no difference in energy intake between the groups at 
either CID1 or CID2 (data not shown). Furthermore, there were no difference in energy intake between the WM 
group (6226 ± 533 kJ/day) and WR (6788 ± 875 kJ/day) when measured at the end of the 6-month weight 
maintenance phase (CID3). This indicates that ad libitum consumption of low-fat diets during the 6-month 
weight maintenance phase did not influence weight regain or maintenance in study participants; thereby 
reinforcing that changes observed in gene expression and bio-clinical parameters were not related to differences 
in energy intake. 

 
Changes in insulin secretion predicts 6-month weight maintenance 

The area under the curve (AUC) for glucose and insulin response after an OGTT was calculated in all 
subjects before and after the LCD. No significant differences in glycemic response were detected between WM 
and WR at either CID1 or CID2. In contrast, the OGTT induced insulin secretion was markedly higher in WM 
compared to WR at CID1 (WM  AUC 8245 ± 881; WR  AUC 5674 ± 509; P < 0.0001); despite similar 
baseline fasting insulin levels. The LCD resulted in a significant decrease in insulin secretion in the WM group 
only. At CID2 there was no significant difference in insulin secretion between WM and WR. The group*time 
interaction analysis reinforced that changes in insulin secretion were specific to the WM group (P = 0.0123). 

 
Gene Expression Analysis 
Gene expression differences between WM and WR before and after the LCD  
 Adipose tissue gene expression in WM and WR was first examined at CID1 and CID2 independently. 
Although there were no significant differences in bio-clinical parameters at CID1 between WM and WR 
subjects, a gene expression analysis revealed that 1292 genes were differentially expressed between the two 
groups prior to commencing the LCD. Despite this large number of differentially expressed genes, a functional 
pathway analysis failed to detect any differences in KEGG biological pathways between the two groups. At 
CID2 the two groups of subjects appeared more similar with regards to their scAT gene expression profiles, with 
only 77 genes identified as differentially expressed between WM and WR. Again, no KEGG pathways were 
found to differ significantly between the groups. 
 
The effects of LCD-induced weight loss on gene expression in WM and WR 

The primary goal of the current study was to assess the differences in LCD-induced changes in gene 
expression in subjects classified as WM and WR. When comparing changes in gene expression between CID1 
and CID2, 1291 and 1298 genes were differentially expressed in WM and WR, respectively. More specifically, 
583 genes were up-regulated and 708 were down-regulated in the WM, while 628 genes were up-regulated and 
670 were down-regulated in the WR. The most significant down-regulated gene in both WM and WR was 
stearoyl-CoA desaturase (SCD1; WM -3.4 fold; WR -2.5 fold), the rate-limiting enzyme responsible for the 
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conversion of saturated fatty acids into monounsaturated fatty acids (30). In WM, the most up-regulated gene 
was cell death-inducing DFFA-like effector a (CIDEA; +2.2 fold); which was not differentially regulated in WR. 
This gene plays an important role in adipose tissue energy expenditure and lipid accumulation, in particular 
increasing fat oxidation (31). In WR, the up-regulated gene was vimentin (VIM; +2.0 fold). This gene, expressed 
in fibroblasts and preadipocytes, was unique to WR and is thought to play an important role in the cellular 
remodelling that occurs during adipocyte differentiation (32). Expression changes in SCD1 and CIDEA were 
confirmed by real-time RT-PCR (data not shown); however expression changes for VIM were not significant (P 
= 0.17). 

The two gene lists for WM and WR were further dissected in order to better explore the shared and 
unique gene expression responses to the LCD between the two groups. 1027 and 1034 genes were uniquely 
regulated in WM and WR, respectively (FIGURE 2). Although there were a large number of differentially 
expressed genes unique to the two groups, the functional analysis revealed that these genes tended to belong to 
similar functional pathways (FIGURE 2). The LCD caused an increase in ribosomal genes and decreases in 
oxidative phosphorylation and metabolism pathways in both groups. The genes associated with oxidative 
phosphorylation are also found in other pathways, which is why pathways related to Alzheimer’s, Huntington’s, 
and Parkinson’s disease appear in FIGURE 2; however, it is the oxidative phosphorylation pathway that is most 
relevant when considering adipose tissue gene expression. The LCD caused a decrease in valine, isoleucine, and 
leucine degradation pathway (related to 10 genes: ABAT, ACAA2, ALDH6A1, AOX1, BCKDHB, DLD, HIBADH, 
HMGCS1, HSD17B10, and MCCC1) in WM subjects, while the LCD caused a decrease in the fructose and 
mannose metabolism pathway (related to 6 genes: ALDOA, ALDOB, KHK, MPI, PFKM, and PFKP) in WR 
subjects.  

 After removing genes uniquely regulated in the two groups, 264 genes were differentially expressed in 
both WM and WR; however, directional concordance was not always maintained. As depicted in FIGURE 2, 
170 genes were in directional concordance, meaning that the LCD had a similar effect on gene expression in 
both WM and WR groups. In contrast, 94 genes were regulated oppositely, meaning that the LCD had a different 
effect on gene expression in each group.  

Those genes in directional concordance (DC) suggest the LCD caused a decrease in the biosynthesis of 
unsaturated fatty acids and alpha-linoleic metabolism pathways in both WM and WR. These pathways include 
such genes as fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2), acyl-CoA oxidase 1 (ACOX), 
and stearoyl-CoA desaturase (SCD1). Both SCD1 and FADS1 changes in expression were confirmed by real-
time RT-PCR (data not shown). In addition, a subset of genes related to ribosomal pathways was up-regulated by 
the LCD in WM and WR. 

We also examined pathways that were oppositely regulated by the LCD (OPP in FIGURE 2) in WM 
and WR groups. Several genes related to focal adhesion functions were up-regulated in WR and down-regulated 
in WM following the LCD: catenin beta 1 (CTNNB1), fibronectin 1 (FN1), mitogen-activated protein kinase 1 
(MAPK1), PTK2 protein tyrosine kinase 2 (PTK2), β-actin (ACTB), and caveolin 1 (CAV1). These genes play 
important roles in the coordination of the extra-cellular matrix, and mediate processes such as cell growth and 
differentiation, and intracellular signalling; suggesting that a LCD had different effects on extracellular matrix 
remodelling in the two groups. Interestingly, the LCD resulted in the increased expression of genes related to 
apoptosis and the p53 signalling pathway in WM subjects and not WR subjects. More specifically, caspase 3 
(CASP3) and caspase 8 (CASP8) are up-regulated in WM, while these genes are down-regulated in WR. CASP8 
gene expression values were validated by real-time RT-PCR. Both CASP3 and CASP8 play crucial roles 
initiating programmed cell death; suggesting that greater cell death in scAT during a LCD may underlie 
successful short-term weight maintenance. 
 
Reporter Metabolite Analysis 

To assess how the transcriptional differences in WM and WR most likely affected downstream 
metabolism, we overlaid our gene expression data with the EHMN reconstruction (28) and used Reporter 
Metabolite Analysis (26) to identify metabolites that may represent biomarkers for successful weight 
maintenance. It is apparent by the network structure that the LCD induces a more highly coordinated response in 
WM subjects compared to WR subjects, as represented by the dense and highly inter-connected network 
(FIGURES 3A and B); however, there are some shared and distinct features within these two networks that are 
noteworthy. 

Metabolites identified as significantly down-regulated by the LCD in both WM and WR were (2R, 4S)-
2, 4-diaminopentanoate and 2-amino-4-oxopentanoic acid from the D-arginine and D-ornithine pathway (P = 4.5 
x 10-4, P = 2.0 x 10-6, respectively). Their significance was driven by the GAPDH gene, which was down-
regulated in both groups during caloric restriction (WM -1.16 fold; WR -1.17 fold).  

Interestingly, we observed a global pattern in the metabolite network that was unique to WM and 
related to a large number of differentially expressed enzymes. The LCD resulted in a marked coordinated down-
regulation in enzymes associated with fatty acid metabolism, citric acid cycle, and oxidative phosphorylation in 
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WM subjects; a signature that is absent in WR. More specifically, several metabolites displayed differential 
expression in their associated enzymes: NADPH, NADP+, NADH, H+, CoA, acetyl-CoA, acyl-CoA, stearoyl-
CoA, oleoyl-CoA, palmitoyl-CoA, and palmitoleoyl-CoA (TABLE 2). The majority of these metabolites (9 out 
of 11) were previously identified in the Capel et al study (20), where the authors also reported a marked down-
regulation in the same enzymes during energy restriction. Most of these metabolites were related to a large 
number of enzymes (reflected by the numerous connections to several enzymes in the metabolic network), which 
reinforced the differences in network connectivity observed between WM and WR, as these metabolites were not 
significantly regulated in the WR group. 
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Discussion 
 

Considerable inter-individual variability in weight maintenance following caloric restriction has been 
observed. The present study was designed to assess whether changes in scAT gene expression profiles during the 
weight loss phase of a dietary intervention protocol could be used to predict changes in body weight during a 
subsequent 6-month weight maintenance phase. This analysis revealed that an 8-week low calorie diet (LCD) 
triggered distinct changes in scAT gene expression in subjects classified as weight maintainers (WM; 0-10% 
weight regain) compared to weight regainers (WR; 50-100% weight regain). Furthermore, only the WM group 
experienced changes in plasma triglyceride levels and insulin secretion during the LCD.  

Fasting triglyceride levels were significantly decreased by the LCD in the WM group only. Schwab et 
al previously reported decreases in triglycerides enriched in saturated and short-chain fatty acids following 
energy restriction, which were associated with improved insulin sensitivity (33). A larger follow-up study failed 
to find significant decreases in plasma triglycerides (15), suggesting variability in response to an energy 
restricted diet. Weight maintenance was not assessed in either study; therefore it is unclear whether a relationship 
exists between the changes in triglycerides and successful 6-month weight maintenance.  

A significant reduction in insulin secretion during the LCD was observed in WM, but not WR, subjects. 
Although the fasting insulin levels in WM and WR groups were not different at CID1, it is important to note that 
data regarding insulin secretion in response to an OGTT is not routinely used for bio-clinical matching of 
different subject groups. Therefore the significantly higher CID1 insulin secretion measured in WM compared to 
WR may serve as a novel predictor for successful weight maintenance following a LCD phase. A number of 
studies have attempted to determine whether insulin secretion plays a role in long term body weight regulation 
(34, 35). Previous research has tended to examine whether insulin secretion affects weight gain. Baseline insulin 
resistance was shown to not predict weight loss in healthy obese women who consumed a hypocaloric diet (36); 
our data suggests that baseline insulin resistance does not predict successful weight maintenance either. 
Recently, Crujeiras et al reported that baseline fasting plasma insulin levels do not predict weight regain (37); 
our results confirm this result as well. Schwartz et al demonstrated that reduced insulin secretion was a 
significant predictor for weight gain (34) and Chaput et al showed that 30 minute insulin levels during an OGTT 
were positively associated with 6-year weight gain (38). It is difficult to directly compare the outcomes of our 
study and these other studies because of different experimental designs; however, our data suggests that insulin 
secretion may indeed be a useful predictor of changes in body weight.  

The present study provides a novel contribution to the existing literature by analyzing whether LCD-
induced changes in scAT gene expression can be used to predict successful short-term weight maintenance. The 
functional analysis of gene expression data showed that focal adhesion, apoptosis and p53 signalling pathways 
were differentially regulated during a LCD in WM and WR. In the WM group, subjects experienced a decrease 
in the focal adhesion pathway; which consists of extracellular matrix genes associated with diverse functions 
such as inflammation, and cell growth and differentiation. Because the present study used a hypothesis 
generating approach and the genes related to focal adhesion have wide-ranging roles in various signalling 
pathways, it is difficult to predict whether extracellular remodelling is higher or lower in each group. Rather, we 
report here that a LCD has different effects on the extracellular matrix in WM and WR subjects. 

The LCD caused an increase in caspase gene expression in WM subjects (i.e. apoptosis pathway), 
suggesting that these subjects may be experiencing an increase in scAT apoptosis. In addition, CIDEA, the most 
up-regulated gene in WM has also been shown to regulate apoptosis in different cell types, including adipocytes 
(39). Little previous work has examined the impact of diet-induced weight loss on adipose tissue apoptosis. 
Aubin et al studied obese subjects and found that an inhibitor of cellular adipose apoptosis was increased in the 
stroma-vascular fraction of scAT following weight loss (40). This work aligns with that of Alkhouri et al who 
recently showed that caspase-3 was up-regulated (i.e. increased apoptosis) in diet-induced obese mice (41). Our 
results suggest the opposite, where a LCD increased CASP3 and CASP8 expression only in individuals 
experiencing successful short-term weight maintenance. Although our study and that of Alkouri et al appear to 
conflict, there are several noteworthy differences. Firstly, different fat depots were used in these studies, 
suggesting that omental and subcutaneous fat depots may regulate apoptosis pathways differently following 
changes in body weight. Secondly, Alkouri et al compared morbidly obese and lean individuals, while we 
recruited only moderately obese participants. Despite these differences, both studies demonstrate that changes in 
body weight may influence adipose tissue apoptosis. Because of the variable response observed between 
individuals following caloric restriction, it appears likely that stratifying our population into WM and WR 
groups has better highlighted subtle differences in scAT apoptosis. The notion that greater scAT apoptosis 
during a LCD may predispose individuals to successful weight maintenance is intriguing; however, future 
studies are required in order to confirm this finding, identify the specific adipose tissue cell-type in which the 
apoptosis pathway is increased, and determine the physiological outcome for this increase.  
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The FunNet analysis revealed that a LCD regulated oxidative phosphorylation and lipid metabolism 
pathways similarly in both WM and WR subjects. However, the valine, isoleucine, and leucine degradation 
pathway was detected in WM subjects only and the fructose and mannose metabolism pathway was detected in 
WR only. The experimental design used in the present study is unique; therefore identifying pathways regulated 
by a LCD and associating this with successful and/or unsuccessful weight maintenance represents a novel 
finding that requires further examination.  

Interestingly, the metabolic network analysis was able to pick up several metabolites related to fatty 
acid metabolism, the citric acid cycle, and oxidative phosphorylation that were specifically regulated by the LCD 
in WM and associated with a large number of down-regulated enzymes. It is most likely that this analysis was 
able to detect these differences because it incorporates metabolic network topology, a feature which is often 
lacking in classical bioinformatic functional analyses such as FunNet. The marked differential expression and 
major down-regulation in enzymes catalyzing fatty acid metabolism, the citric acid cycle, and oxidative 
phosphorylation observed during the LCD in WM suggests that individuals predisposed for successful weight 
maintenance may be able to decrease fat accumulation by coordinating a better overall metabolic response.  

In conclusion, the current study demonstrates that LCD-induced changes in bio-clinical parameters and 
scAT gene expression may foreshadow weight maintenance and weight regain. More specifically, the LCD led 
to significant decreases in plasma triglyceride levels and insulin secretion only in subjects who subsequently 
experience successful short-term weight maintenance. Global gene expression profiling in scAT revealed that a 
LCD up-regulated pathways related to apoptosis in WM compared to WR. Moreover, metabolic network 
analyses revealed that genes related to fatty acid metabolism, the citric acid cycle, and oxidative phosphorylation 
are significantly down-regulated during the LCD in these same subjects. While it remains unclear to what extent 
LCD-induced changes in gene expression can be used to confidently predict short-term weight maintenance, our 
study reinforces the continued need to explore the relevance of genetic and metabolic factors for predicting 
changes in body weight. 
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Table 1: LCD response in each group, as reflected in commonly measured bio-clinical parameters1.  
Weight Regainers (WR) 

(n = 20) 
Main effect 

TIME 
Weight Maintainers (WM) 

(n = 20) 
Main effect 

TIME 
GROUP*TIME  

interaction Bio-clinical Parameter 
CID1 CID2 P-value2 CID1 CID2 P-value2 P-value3 

Weight (kg) 91.9 ± 2.8 83.2 ± 2.6 <0.0001** 91.8 ± 2.7 82.1 ± 2.6 <0.0001** 0.1568 
Body mass index (BMI) 33.5 ± 0.9 30.3 ± 0.9 <0.0001** 33.5 ± 0.9 29.9 ± 0.8 <0.0001** 0.1053 
Fasting Cholesterol (mmol/l) 4.9 ± 0.2 4.1 ± 0.2 <0.0001** 5.1 ± 0.2 4.2 ± 0.2 <0.0001** 0.5989 
Fasting Triglycerides (mmol/l) 1.1 ± 0.1 1.0 ± 0.1 0.3522 1.3 ± 0.1 1.0 ± 0.1 0.0007** 0.0627 
Fasting HDL (mmol/l) 1.3 ± 0.1 1.1 ± 0.1 0.0039** 1.2 ± 0.1 1.1 ± 0.1 0.2918 0.1552 
Fasting Fructosamin (µmol/l) 202 ± 4 200 ± 5 0.6280 206 ± 5 207 ± 4 0.8761 0.6489 
Fasting Adiponectin (µg/ml) 9.8 ± 1.0 10.4 ± 1.0 0.4430 9.2 ± 1.0 10.4 ± 1.0 0.1276 0.5832 
Fasting CRP (mg/l) 3.9 ± 0.6 4.8 ± 1.3 0.3666 4.6 ± 0.8 3.4 ± 0.9 0.1941 0.1238 
Fasting glucose (mmol/l) 5.0 ± 0.1 4.7 ± 0.1 0.0032** 5.0 ± 0.1 4.7 ± 0.1 0.0007** 0.7126 
Fasting insulin (µIU/ml) 8.9 ± 0.7 6.2 ± 0.6 0.0004** 11.8 ± 1.1 6.7 ± 0.7 <0.0001** 0.0479* 
HOMA-IR 2.3 ± 0.2 1.5 ± 0.2 0.2496 2.9 ± 0.3 2.2 ± 0.8 0.3491 0.8704 

 
1All values are means ± SEM. CID1 refers to the time point before caloric restriction; CID2 refers to the time point after 8 weeks of caloric restriction; WR, weight regainers; 
WM, weight maintainers; HOMA-IR, homeostasis model assessment of insulin resistance; CRP, C-reactive protein. The table includes bio-clinical variables at CID1 and 
CID2 in 20 women classified as weight regainers (WR) and 20 women classified as weight maintainers (WM). There was no GROUP effect at either CID1 or CID2, 
reinforcing that groups were well matched. 
 
2P < 0.05 for TIME effects determined using an ANOVA and a post-hoc student’s T-test to identify significant differences. 
 
3P < 0.05 for significant interactions between GROUP (WM and WR) and TIME (CID1 and CID2). Subjects were paired at the two time points (i.e. CID1 and CID2) and bio-
clinical parameters analyzed using an ANOVA model. An ANOVA model was generated and least square means were estimated for the differences between groups, times, 
and the interaction between group and time (GROUP*TIME), taking into account repeated measurements for all subjects.  
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Table 2. Reporter metabolites identified in WM and WR, and their validation with an independent study1.  
  Weight Maintainers (WM) Weight Regainers (WR) Capel et al (Ref #20) 
Reporter metabolite p-value2 ↑ reactions ↓ reactions p-value2 ↑ reactions ↓ reactions p-value2 ↑ reactions ↓ reactions 
NADPH 0.008 57 88 0.217 75 70 0.026 6 16 
Oleoyl-CoA 0.009 4 4 0.111 2 6 0.020 0 2 
CoA 0.009 42 67 0.427 45 64 0.002 6 15 
Acetyl-CoA 0.012 24 46 0.768 26 44 0.035 2 10 
Stearoyl-CoA 0.013 5 8 0.164 3 10 0.020 0 2 
NADP+ 0.019 58 90 0.237 76 72 0.020 6 16 
H+ 0.031 128 204 0.117 149 183 0.037 9 38 
NADH 0.033 50 74 0.217 75 70 0.085 3 21 
Palmitoyl-CoA 0.039 10 17 0.105 7 20 0.054 1 2 
Acyl-CoA 0.044 18 18 0.202 13 23 0.000 0 6 
Palmitoleoyl-CoA 0.050 7 8 0.154 6 9 0.005 0 2 

 
1 To assess how the transcriptional differences in WM and WR most likely affected downstream metabolism, we overlaid our gene expression data with the Edinburgh human 
metabolic network (EHMN) reconstruction and used the reporter metabolite algorithm to identify metabolites that vary between the two groups. We compared our results with 
those of Capel et al (20). Note that even though EHMN reconstruction was used in both studies, the number of enzymes detected in each network differed because the 
different algorithms used to identify differentially regulated genes. 
 
2The reporter metabolites’ unadjusted P-values denote their significance of being metabolic “hot-spots”. In other words, these metabolites are connected to more differentially 
regulated enzymes (between CID1 and CID2) than expected by chance. The ↑ and ↓ arrows indicate the number of metabolic reactions in which the metabolite is catalyzed by 
an enzyme that is either up- or down-regulated during the LCD. P < 0.05 for significant changes in reporter metabolites. 
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Figure 1: BMI evolution over the course of the intervention period. Each dotted line depicts the weight curve 
of an individual, where red and blue lines are for WM and WR, respectively. The solid red and blue lines depict 
the group average for WM and WR, respectively. CID1 refers to the time point before caloric restriction; CID2 
refers to the time point after 8 weeks of caloric restriction; CID3 refers to the time point after the 6-month weight 
maintenance phase. 
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Figure 2: Venn diagram depicting overlap in differentially expressed genes following the LCD in WM and 
WR. Functional analyses revealed that although the genes regulated by the LCD in WM and WR differ they are 
related to similar functional processes. The LCD caused a significant decrease in the valine, leucine, and 
isoleucine degradation pathway in WM subjects. The LCD caused a significant decrease in the fructose and 
mannose metabolism pathway in WR subjects. Genes that are differentially expressed by the LCD in both WM 
and WR were not always directionally concordant. DC indicates genes in directional concordance, i.e. up or 
down in WM and WR subjects. Oxidative phosphorylation and biosynthesis of unsaturated fatty acids pathways 
were decreased by the LCD in both WM and WR.  OPP indicates genes that are not directionally concordant, i.e. 
up in WM and down in WR, or vice versa. The apoptosis pathway was up-regulated by the LCD in WM 
compared to WR. ↑ and ↓ indicate an increase and decrease, respectively, during the LCD. 
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Figure 3. Metabolic reconstruction network analysis corresponding to LCD-induced changes in gene 
expression in WM (A) and WR (B). We used a high-confidence metabolic network reconstruction to search for 
metabolites that are catalyzed by enzymes that exhibit coordinated changes in gene expression levels during the 
LCD. The metabolic networks consist of metabolites (circles) that are connected to enzymes (diamonds) that 
catalyze the metabolites. Only metabolites linked to enzymes for which the underlying genes are differentially 
expressed during the LCD are shown. Metabolite circles are scaled according to their significance (i.e. larger 
circles reflect smaller P-values), where the P-value denotes the significance of being a metabolic “hot-spot”. A 
metabolite that is connected to a large number of differentially regulated enzymes (between CID1 and CID2) 
will be depicted by a larger circle. The ranges of P-values, which correspond to circle size, are (A) 2.0 x 10-5 to 
0.05 and (B) 8.9 x 10-10 to 0.05. For enzymes, red indicates an up-regulation and green a down-regulation in gene 
expression. The impact of the LCD on scAT gene expression is more highly coordinated in WM than WR, as 
represented by the dense and highly inter-connected network. In WM (A) the LCD elicits a marked coordinated 
down-regulation of genes coding for enzymes associated with fatty acid metabolism, citric acid cycle, and 
oxidative phosphorylation (shaded in yellow). That signature is absent in the WR analysis (B) in which alternate 
sites in metabolism are active. Highly significant metabolites common to both WM and WR are shaded in 
purple. 
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6Concluding remarks

In thisesis I have presented and discussedmethodologies that go beyond approaches
that solely proceed within a single data type, such as traditional GWA analysis. Limit-
ations in the latter type of approaches are becoming increasingly apparent, and integ-
rative approaches provide a promising alternative.

One of the major challenges for integrative approaches is that complex traits most
oen are characterized by substantial genetic heterogeneity that is distributed across
processes, which are still poorly represented in interaction databases, and incompletely
captured by existing high-throughput technologies. However, absence of evidence
does not necessarily imply evidence of absence. In the remainder of the esis, I will
outline how data integration can be used to prioritize rare variants for targeted follow-
up studies, and conclude with some final remarks.

emajor theme in thisesis has been thatGWAstudies have proven successful in
identifying novel etiologic loci, but that these single-data type-based analyses comprise
several inherent weaknesses as well. e three most pronounced being:

i) Despite estimations that genetic factors account for at least one third of the vari-
ation in most complex traits, findings from GWA studies currently explain less
than  of the genetic variation for most of them. Let me use obesity as an
example; despite estimations that this risk-phenotype is - heritable, the
established  body-mass index-associated SNPs identified by the GIANT Con-
sortium (a collaboration on GWA studies with focus on anthropometric meas-
ures) [Speliotes et al., ] account for less than  of the genetic variation in
the trait.

ii) For most loci from GWA studies it is not clear what gene is the relevant one
(several genes overlapmost GWA loci), and in situations where the relevant gene
could be mapped, it is oen unclear what its function is.

iii) For most heterogenic traits (including obesity) genetic interactions between risk
variants remain elusive. In addition, no specific etiologic pathways have been
assigned to the majority of the loci identified in GWA studies.

In the post GWA analysis era, the genetics research community is turning towards
sequencing to detect rare variants that my explain larger parts of the genetic variation
in complex traits (and in some cases identify risk enhancing or risk decreasing genes
unambiguously − at least for coding variants). Examples on such efforts are () im-
putation of GWA study data with variation data from the  Genomes Project [





Genomes Project Consortium et al., ], () re-sequencing of loci that have been
associated with complex traits [Hardy and Singleton, ], () new microarrays that
capture rare variants, () exome sequencing, and () whole-genome sequencing. Es-
pecially, the latter two analytical avenues have resulted in the discovery of causal vari-
ants for several Mendelian disorders [Ng et al., ], and are producing a wealth of
rare variant data.

Arguably, themassive amount of datamay soon become a 'burden' rather than valu-
able new information, as the identification of rare causal variants in heterogenic traits
is believed to become challenging. Specifically, smaller sample sizes (due to relatively
high cost of sequencing), and difficulties in distinguishing background variation from
causal variation, will limit statistical power to detect etiologic variants.

A key hypothesis underlying thework presented in thisesis, was that a given risk-
phenotype is rarely the consequence of a single polymorphic gene, but rather caused
by a complex interplay of various risk variants acting upon networks of genes. I have
presented three different methodologies that address points (i) - (iii) by using data
integration as a means to augment analyses of genetic variation underlying complex
traits. In Paper I, my co-workers and I presented a method that identifies associations
with individually moderate effects, but in aggregate significant effects on the pheno-
type. In Paper II, we showed that integration of several complementary data types
identifies associations that were missed in the original studies. In Paper III, we repor-
ted that information on known associations' enrichment in specific protein complexes,
may incriminate other, hitherto uncharacterized, susceptibility genes. In Papers IV-V,
we showed that coordinated changes in gene expression levels may foreshadow down-
stream phenotypic changes. ese approaches may lead to a better understanding of
genetic variation in complex traits, by () identifying novel moderate effect size risk
factors, () placing genes in etiological contexts, and () pinpointing pathobiological
pathways.

Oentimes less is more, but when it comes to deciphering biology more can make the
difference.

For instance the new Metabochip, a custom-designed Illumina microarray that holds , medium
rare SNPs within regions that previous GWA studies have been associated withmetabolic and cardiovascular
traits [Ingelsson, ].


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Soranzo, N., Park, J.-H. H., Yang, J., Gudbjartsson, D., Heard-Costa, N. L., Randall,
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A., Meitinger, T., Mulas, A., Paré, G., Parker, A. N., Peden, J. F., Petersmann, A.,
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Workalemahu, T., White, C. C., Bouatia-Naji, N., Harris, T. B., Berndt, S. I., Ingels-
son, E., Willer, C. J., Weedon, M. N., Luan, J., Vedantam, S., Esko, T. o., Kilpeläinen,
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C., Köttgen, A., Le Bacquer, O., Pattou, F., Taneera, J., Steinthorsdottir, V., Rybin,
D., Ardlie, K., Sampson, M., Qi, L., van Hoek, M., Weedon, M. N., Aulchenko, Y. S.,
Voight, B. F., Grallert, H., Balkau, B., Bergman, R. N., Bielinski, S. J., Bonnefond, A.,
Bonnycastle, L. L., Borch-Johnsen, K., Böttcher, Y., Brunner, E., Buchanan, T. A.,
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FTO analysis: Methods and materials used for the expression analysis

cDNA synthesis

RNA from the largemouse tissue panel was prepared by Zyagen (SanDiego, CA, USA).
RNA for the large human tissue panel was purchased from Clontech, Mountain View,
Ca. e small human brain tissue panel was purchased from BioChain Institute, Hay-
ward, CA. Aliquots of all human RNAs was treated with DNAse I and using DNAse
treated RNA and three primer sets specific for  untranscribed chromosomal regions
(chromosomes ,  and , human RNA samples used in this study were tested neg-
ative for the presence of genomic DNA. Aliquots of . µg RNA were used as tem-
plate for cDNA synthesis with an RNAseH-deficient reverse transcriptase derived from
MoMLV (SuperScript) and a poly-dT primer. Aliquots of a subset of the RNAs were
reverse transcribed both with a poly-dT and a random hexamere primer. cDNA from
all samples of each cDNA panel was synthesized at the same time using the same mas-
termix to avoid technical variations.

Quantitative real-time PCR

All primers were designed using Oligo . soware (Molecular Biology Insights, Cas-
cade, CO) and ordered from TAG Copenhagen A/S, Denmark (Supplementary Mater-
ial). Where possible, primers were designed to be intron spanning amplifying  to
 bps. optimal annealing temperature for each primer set was determined by gradi-
ent RT-PCR (PTC-, Bio-Rad, Hercules, CA) with cDNA prepared from Universal
Human Reference RNA (Stratagene, La Jolla, CA) as template. Gel electrophoresis and
melting curve analysis were used to verify that a single PCR product of the predicted
size was generated. e product was subsequently isolated using the GENECLEAN
II Kit (Qbiogene Inc., Irvine, CA) and serially diluted and used for generation of a
standard curve. Using approximately  ng of each cDNA sample as template, Q-PCR
was done in duplicates in an Opticon- thermocycler (Bio-Rad, Hercules, CA), using
LightCycler-FastStart DNA Master SYBR Green I kit (Roche, Germany). All ampli-
fications were performed in a total volume of  µl containing  mM MgCl, 
sucrose, and x reaction buffer included in the LightCycler kit. e PCR cycling pro-
file consisted of a -min pre-denaturation step at ∞C followed by  three-step
cycles; at ∞C for  s, at the optimized annealing temperature indicated in Table
 and  for the specific gene for  s, and finally at ∞C for  s. For quantitation,
a Bestkeeper [Pfaffl et al., ] normalization factor was calculated using the most
stable housekeeping genes. Normalized relative amount of RNA was calculated as de-
scribed [Vandesompele et al., ].

In situ hybridization

In situ hybridization of the non-coding RNA was performed on -µm frozen tissue
sections fromadult (BalB/C)mouse brain. Sectionswere fixed in paraformaldehyde
and acetylated in acetic anhydride/triethanolamine, each followed by washes in PBS.
Sections were then prehybridized in hybridization solution ( formamide, x SSC,
.mg/mL yeast tRNA, x Denhardt's solution) at ∞C for  hours.  to  bps long
oligonucleotide probes have been designed complementary to the putative non-coding
RNAboth on the sense and the antisense strand since the direction of transcriptionwas
not clear. A set of control probes has also been designed outside the sequence of the
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candidate RNA since the borders of the gene was not known. e probes were pur-
chased FITC-labelled at both ends (TAGC, Denmark). e probes on the same strand
are either used in combination or separately. Ten-picomole probes were hybridized at
∞C overnight. Aer post-hybridization washes in  formamide at ∞C ,.x
SSC at ∞C and . SSC at ∞C, the in situ hybridization signals were detected
using the tyramide signal amplification system (Perkin Elmer) according to the man-
ufacturer's instructions. Slides were mounted in Prolong Gold containing DAPI (In-
vitrogen) and analyzed with an Olympus MVX microscope equipped with a CCD
camera and Olympus CellP soware.

Supplementary ĕgures

Figure : In situ analysis results of coronal mouse brain sections.
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Figure : In situ analysis results of from the  different primers ( for each strand).
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