2,086 research outputs found

    Advanced Techniques for Design and Manufacturing in Marine Engineering

    Get PDF
    Modern engineering design processes are driven by the extensive use of numerical simulations, and naval architecture as well as ocean engineering are no exception. Structural design or fluid dynamic performance evaluation can only be carried out by means of several dedicated pieces of software. Classical naval design methodology can take advantage of the integration of these pieces of software, giving rise to more robust design in terms of shape, structural and hydrodynamic performances, and manufacturing processes. This Special Issue (SI) on “Advanced Techniques for Design and Manufacturing in Marine Engineering”, published in the Journal of Marine Science and Engineering, aimed to invite researchers and engineers from both academia and industry to publish the latest progress in design and manufacturing techniques in marine engineering as well as to debate current issues and future perspectives in this research area. After a rigorous peer review process we accepted 11 papers [1–11], covering a wide range of topics related to the themes proposed in the Special Issue. In [1], machine-learningbased algorithms are developed in order to enhance the real-time decision process of an AUV sailing yacht. In [2], topology optimization techniques and laser powder bed fusion manufacturing have been synergically adopted to redesign the bulb of sailing yachts, leading to drag reduction and improving overall boat performance. In [3], the topic of sail design is discussed by means of numerical fluid structure interaction methods and a practical tool is proposed to support the analyst during the design process of a yacht sail plan. The sail design process is also investigated in [4] but using different tools, such as combining a velocity prediction program, RANS computations, and analytical approaches. The problem of grid generation in a CFD model has been studied in [5], where the authors propose, for the particular shape of a submarine, an automated procedure based on Cartesian adaptive grids. The applicability of a CFD numerical technique to a complex biphase fluid medium is the key point of [6], where the robustness of the method is tested to simulate the ventilation phenomenon occurring in stepped hull planing motor yachts. In [7], an analytical tool incorporating the main dimensional naval coefficients of a sailing boat is adopted during the early design stage, with the additional aim of quickly predicting the overall resistance of the hull. In [8], different pieces of sensor information have been used by the authors to train an algorithm able to control water sample collection in deep water. Computational methods have been used in [9] to determine the resistance of ship fuel tanks when subjected to an increased internal pressure. In [10], a simulation model has been used to design a platform able to compensate for the wave action on a vessel, with particular attention to the shape optimization of the structure in order to reduce the total weight. Finally, in [11], CFD tools using moving meshes have been adopted to simulate turbulent flows that originate in an oscillating water column device and move a Savonius turbine

    fatigue delamination experiments on gfrp and cfrp specimens under single and mixed fracture modes

    Get PDF
    Abstract This paper deals with the experimental analysis of the delamination phenomena in composite materials under different loading conditions. Quasi-static and fatigue tests are performed on specimens made of glass-fibre (GFRP) and carbon-fibre (CFRP) reinforced plastic. In particular, experiments have been carried out under single fracture modes I and II (using standard DCB and ENF test configurations) and mixed modes I+II (using the MMB test configuration) with several mode mixtures. Results obtained for the two materials have been compared paying attention on the relationship between the parameters that describe the fatigue behaviour and the mode mixture acting during the crack propagation

    Thermo-Mechanical Behaviour of Flax-Fibre Reinforced Epoxy Laminates for Industrial Applications

    Get PDF
    The present work describes the experimental mechanical characterisation of a natural flax fibre reinforced epoxy polymer composite. A commercial plain woven quasi-unidirectional flax fabric with spun-twisted yarns is employed in particular, as well as unidirectional composite panels manufactured with three techniques: hand-lay-up, vacuum bagging and resin infusion. The stiffness and strength behaviours are investigated under both monotonic and low-cycle fatigue loadings. The analysed material has, in particular, shown a typical bilinear behaviour under pure traction, with a knee yield point occurring at a rather low stress value, after which the material tensile stiffness is significantly reduced. In the present work, such a mechanism is investigated by a phenomenological approach, performing periodical loading/unloading cycles, and repeating tensile tests on previously \u201cyielded\u201d samples to assess the evolution of stiffness behaviour. Infrared thermography is also employed to measure the temperature of specimens during monotonic and cyclic loading. In the first case, the thermal signal is monitored to correlate departures from the thermoelastic behaviour with the onset of energy loss mechanisms. In the case of cyclic loading, the thermoelastic signal and the second harmonic component are both determined in order to investigate the extent of elastic behaviour of the materia

    Using FEM simulation to predict structural performances of a sailing dinghy

    Get PDF
    The use of finite element method (FEM) tools is proposed to investigate the structural response of an eco-sustainable sailing yacht to different loading conditions, typical of those acting during regattas. The boat is, in particular, a 4.60 m dinghy with the hull and the deck made of an hybrid flax\ue2\u80\u93cork sandwich and internal reinforcements made of marine plywood. A preliminary activity has consisted in the refitting of an existing model in order to reduce the hull weight and to improve performances during manoeuvrings. These tasks have been interactively simulated in the virtual environment of the boat CAD model, where longitudinal and transversal reinforcements were enlightened and the maximum beam reduced. At the same time, results of FEM simulations on the modified model were analysed in order to verify the structural integrity. Shape modifications have been applied to the real model in laboratory and the resulting hull has been instrumented with strain gauges and tested under rigging conditions to validate the numerical procedure. Finally, the FEM model was used to predict the response of the boat to loading systems typical of sailing conditions

    3D BUCKLING ANALYSIS OF MULTIDELAMINATED COMPOSITE SPECIMENS

    Get PDF
    The behaviour of thin composite laminates (unidirectional, cross-ply and angle-ply) under compressive loads has been examined in cases where multiple delaminations are present. The problem is solved using the Finite Element Method (FEM) both with linear analyses, based on the eigenvalues research problem, and with nonlinear analyses, based on incremental-iterative procedures. In particular, the role of the delamination length, of the angle of the plies and of the stacking sequence on the critical load is investigated. Results are compared with those found in literature derived from experimental or numerical 2D analyses

    Contact between the components of a knee prosthesis: numerical and experimental study

    Get PDF
    The aim of this work is the analysis of the contact area in a knee prosthesis using two different approaches. In particular, the interface between the femoral component and the polyethylene insert has been studied both numerically and experimentally. The interest in studying the contact area is related to the fact that the wear of the polyethylene insert, due to the high contact pressures, represents one of the major causes of failure of the total knee prosthesis. The possibility to evaluate the contact area at different loads and mutual position between femur and tibia is, therefore, of fundamental importance to study the service life of a prosthesis and to improve its performance. The finite element numerical approach has required the acquisition, through reverse engineering, and CAD modelling of the prosthetic components. Then the FEM simulations have been developed considering two different load conditions. In order to compare the calculated data, the same load configurations have been used for experimental tests based on ultrasonic method. In this case, some preliminary tests were required to calibrate the system depending on the particular characteristics of materials, geometries and surface finish of the prosthesis.The results show a good correlation between the data obtained with the two different approaches and, consequently, a good level of reliability of the procedures developed for the numerical and experimental evaluation of the contact area. The numerical procedure can be used to determine the area for different angles and loads, but especially in the design phase. The ultrasonic technique can be used to validate the numerical data

    DELAMINAZIONE INTERLAMINARE DI COMPOSITI CFRP AL VARIARE DELLE CONDIZIONI DI CURA DELLA MATRICE

    Get PDF
    In questo lavoro si è condotto uno studio sperimentale del comportamento a delaminazione interlaminare in Modo I di laminati compositi unidirezionali in fibra di carbonio e matrice epossidica (CFRP), al variare delle condizioni di cura della matrice. Tutti i sistemi analizzati hanno utilizzato lo stesso tessuto e lo stesso monomero epossidico DGEBA. Variando il processo di cura (cura termica o mediante radiazioni), gli agenti di cura (ammine o anidridi per i sistemi curati termicamente), e l’impiego di additivi tenacizzanti (es. il PES per i sistemi irradiati), è stato possibile controllare e modificare sia il grado di adesione fibra/matrice, che il grado di fragilità della matrice (monitorato attraverso il Fattore Critico di Intensificazione degli Sforzi KIC). Il lavoro quindi propone una analisi critica dei meccanismi di resistenza alla delaminazione controllati dalla tenacità della matrice e dalla resistenza dell’interfaccia fibra-matrice, mediante la determinazione delle Curve di Resistenza e dei valori di GIC di Innesco e di Propagazione ottenuti per i diversi sistemi presi in esame

    Contact between the components of a knee prosthesis: numerical and experimental study

    Get PDF
    The aim of this work is the analysis of the contact area in a knee prosthesis using two different approaches. In particular, the interface between the femoral component and the polyethylene insert has been studied both numerically and experimentally. The interest in studying the contact area is related to the fact that the wear of the polyethylene insert, due to the high contact pressures, represents one of the major causes of failure of the total knee prosthesis. The possibility to evaluate the contact area at different loads and mutual position between femur and tibia is, therefore, of fundamental importance to study the service life of a prosthesis and to improve its performance. The finite element numerical approach has required the acquisition, through reverse engineering, and CAD modelling of the prosthetic components. Then the FEM simulations have been developed considering two different load conditions. In order to compare the calculated data, the same load configurations have been used for experimental tests based on ultrasonic method. In this case, some preliminary tests were required to calibrate the system depending on the particular characteristics of materials, geometries and surface finish of the prosthesis.The results show a good correlation between the data obtained with the two different approaches and, consequently, a good level of reliability of the procedures developed for the numerical and experimental evaluation of the contact area. The numerical procedure can be used to determine the area for different angles and loads, but especially in the design phase. The ultrasonic technique can be used to validate the numerical data

    The durability of carbon fiber/epoxy composites under hydrothermal ageing

    Get PDF
    Studies on fibre reinforced composites are now receiving greater attention. Industrial applications have been successful in areas like aerospace, automobile, marine, construction and sporting goods. The first generation of epoxy resins for use in carbon fibre composites are able to achieve optimized high stiffness modules and high heat resistance by a high crosslink density, reached through thermal curing. However, these formulations can be very toxic and brittle with low crack resistance, which was a major disadvantage for structural applications. In the last years the use of ionizing radiation as alternative to thermal curing has been proposed as an environmentally friendly process. Furthermore, in order to enhance toughness mechanical requirements for their applications, the formulation generally consists of blends of epoxy resins and engineering thermoplastics. In terms of durability (service life and reliability), in these materials it depends on different environmental conditions (temperature, moisture, etc.), and it is very important to know how their properties are modified after the exposure to different temperature and moisture absorption cycles. In this work carbon fibre composites produced by ionizing radiation induced curing of the epoxy based matrices have been subjected to thermal and moisture absorption ageing and the influence of these treatments on the thermal and mechanical properties has been investigated through dynamic mechanical thermal analysis and mechanical fracture toughness tests
    • …
    corecore