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Abstract 

This paper deals with the experimental analysis of the delamination phenomena in composite materials under 
different loading conditions. Quasi-static and fatigue tests are performed on specimens made of glass-fibre (GFRP) 
and carbon-fibre (CFRP) reinforced plastic. In particular, experiments have been carried out under single fracture 
modes I and II (using standard DCB and ENF test configurations) and mixed modes I+II (using the MMB test 
configuration) with several mode mixtures. Results obtained for the two materials have been compared paying 
attention on the relationship between the parameters that describe the fatigue behaviour and the mode mixture acting 
during the crack propagation. 
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1. Introduction  

Among the several damage mechanisms of long-fibre composite materials, delamination is one of 
those that mostly draws the researcher’s attention. Considering only plane cases, delamination can 
involve two fracture modes as: opening (mode I) and sliding (mode II); mixed modes I+II cases can be 
also present. The case of crack propagation under quasi-static loads (when the applied load increases 
monotonically very slowly) has been studied by several authors, both for single fracture modes and for 
mixed mode. A detailed formulation on the test coupons commonly used in experiments can be found in 
[1] and [2]. Single modes I and II are usually obtained with the Double Cantilever Beam (DCB) test and 
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the End Notched Flexural (ENF) test [3], whereas, for the mixed mode I+II there are different test 
configurations [4] (see fig. 1).  

Fig. 1. Test configurations for single and mixed mode delamination 

The Mixed Mode Bending (MMB) test [5-7] is the super-position of the DCB and the ENF tests and 
permits a fast change of percentage of mode I and mode II by a simple variation of the lever length c.  

In quasi-static condition, crack propagates under single fracture modes when the Strain Energy Release 
Rate (SERR), G, equals its critical value (the interlaminar fracture toughness) Gc. This critical value is a 
material property and can be different for mode I and for mode II. It has been noted [8] that the critical 
SERR depends on the mode mixture φ = GII/G (where G is the sum of GI and GII) and different criteria 
have been proposed to model the material fracture behaviour versus the mode mixture φ. In [8] different 
models are compared and applied to experimental results on a carbon/epoxy material. 

In general, the fatigue delamination of composites, caused by the cyclic application of loads, can be 
described with the Paris approach, where the condition of a stable crack growth can be obtained when the 
instant SERR is greater than a threshold value and lower than the fracture toughness; under this 
hypothesis, the crack growth rate can be described with a power law function. 

Fatigue tests on different composite materials have been performed in [9] for single modes I and II and 
in [10,11], where the load ratio effect and the threshold values for the SERR have been studied. In 
particular, in [10] results for graphite/thermoplastic resin lead to very high values for the Paris constants, 
suggesting that, for this material, a threshold-based design is more realistic than a propagation-based one. 
Single and mixed mode cases have been studied in [12] by considering a graphite/epoxy composite; a non 
monotonic trend of the Paris parameters with the mode mixture was observed. In [13] the effect of the 
temperature has been also verified for the same material and it has been proven that the crack growth rate 
increases with the temperature. 

Semi-empirical monotonic models have been proposed in [14] and [15] to correlate the Paris 
parameters to the mode mixture φ, on the basis of experimental results on different materials. In [15] 
several mode mixtures have been analysed for glass/epoxy composites; the model fits quite well the 
peculiar behaviour of the tested composite, but no tests have been carried out by the authors on different 
materials. In [16] three values of the mode mixture parameter φ (0, 0.5 and 1) have been studied for 
carbon/epoxy material; although the non-monotonic model proposed to relate φ with the Paris parameters 
can be considered of general validity, it is based on very few experimental data. 

In this work experiments of fatigue crack propagation on unidirectional GFRP and CFRP have been 
performed under single and mixed fracture modes. Preliminary quasi-static tests have been accomplished
to calculate the fracture toughness of the materials. For the analysed material, the accordance between the 
monotonic and non monotonic criteria with the experimental results, has been verified. 

2. Material tested 

Two composite material plates have been manufactured by using the same epoxy resin: a 
unidirectional GFRP and a unidirectional CFRP. To create a pre-crack in the specimens, a short strip of 
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anti-adhesive has been stacked in the mid-thickness of the plates. Specimens for material characterization 
have been cut from the plate and tests have been carried out with an electro-mechanical testing machine 
with a 20 kN capacity load cell, under displacement control. Longitudinal elastic modulii for the two 
composite materials are: E11 = 21 GPa (for GFRP) and E11 = 110 GPa (for CFRP). 

Specimens for delamination tests have been machined from the composite plate following the 
indications of the standard ASTM D5528. Width of the specimens is the same for all the tests performed 
in this work. In particular, a width Bw = 20 mm has been measured. Thickness is slightly different for the 
two materials: for the GFRP the total thickness is 2h = 4.7 mm, for the CFRP is 2h = 4.3 mm.  

3. Quasi-static tests 

Quasi-static delamination tests have been performed with an electro-mechanical testing machine 
mounting a 2 kN capacity load cell, under displacement control. The displacement, v, of the cross-head 
and the load, P, measured by the load cell have been recorded. The crack length, a, has been evaluated by 
optical observation of digital photos of the lateral face of the specimen taken with a high resolution Nikon 
camera equipped with a macro lens.  

3.1. Data reduction 

Fig. 2 shows the load-displacement curves for DCB, ENF and MMB tests performed under monotonic 
loads on representative specimens, only for CFRP for sake of concision.  
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Fig. 2. Load vs. displacement diagrams of CFRP specimens during quasi-static delamination tests 

Simplified and more efficient data reduction theories [2-6] can be found in literature to obtain the 
Strain Energy Release Rate from the recorded data. Taking into account spurious phenomena like 
rotations of the arms in correspondence of the crack tip, or shear deformations, the data reduction theory 
suggested in [12] is adopted. In this theory, the opening and shear components of the total strain energy 
released can be found, respectively, (for DCB, ENF and MMB) via the relationships: 
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where IH is the moment of inertia of half-thickness of the specimen, Δ is a correction factor of the 
crack length a, K = 5/6 is the shear factor.  

Following the generalised power criterion proposed in [8], the equation that describes the resistance of 
a material under mixed mode is: 
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In fig. 3 the experimental points are drawn together with the equation (2) obtained by the best-fitting 
procedure implemented in Matlab® environment. It is seen that a linear resistance criterion (α=β=1) 
works better for the GFRP. For the CFRP the best fitting procedure has returned α=1.34 and β=1.49. 
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Fig. 3. Fracture domains of GFRP and CFRP materials. 

4. Fatigue tests 

Fatigue tests have been carried out by using a MTS servo-hydraulic testing machine, equipped with a 
in-house made 1 kN load cell. Both displacement and load control have been used to carry out the 
experiments. Similarly to quasi-static tests, the crack length is measured via optical observation of high 
resolution digital photos. Typical loading frequency was 2 Hz. Mixed mode fatigue tests have been 
performed with the MMB test. A constant load ratio R = Pmin/Pmax = 0.1 was adopted. All the output files 
given by the MTS software have been post-processed in Matlab® environment.  

DCB and ENF fatigue tests have been carried out under load control. In order to obtain a wide interval 
of variation for the SERR, specimens were analysed with different initial crack lengths and/or under 
different load levels. For both the DCB and the ENF test under load control, the crack rate increases with 
cycles up to sudden failure in proximity of the critical value of the static toughness Gc. MMB fatigue tests 
have been performed under displacement control because of the complexity of the kinematics of the 
loading system.   

To plot the fatigue diagrams (da/dN vs. Gmax) the crack length with cycles, a(N), and the maximum 
load with cycles, Pmax(N), have been recorded; the crack length is obtained from the digital photos and the 
load is given by the testing machine software. The experimental data of the crack length are fitted with 
power or exponential curves and the derivative da/dN has been calculated analytically from the fitting 
curve. The instant value of Gmax is evaluated from the load, Pmax(N), and the current crack length, a(N), 
via equations (1).  

In fig. 4 the crack growth rate is plotted versus the maximum value of the total SERR only for the tests 
performed on CFRP specimens (for sake of concision). The Paris power law da/dN = B(Gmax)

m has been 
used to interpolate the data. In some cases when Gmax approaches to the static toughness Gc the curve 
becomes too steep; these points have been excluded from the interpolation procedure. 

Parameters B and m can be related to the mode mixture by using the curve that fits the experimental 
data. Due to the particular distribution of the points in the diagrams, a quadratic curve can be used for 
both parameters. Three constants must be fixed for the curve B(φ) and for the curve m(φ) for each 
material. 
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Fig. 4. Crack growth rate vs. Strain energy diagrams of CFRP specimens during fatigue delamination tests, (a) mode I, (b) mode II, 
(c) mixed mode φ = 0.75. 

The curves are expressed as follows: 

( )[ ] ( ) ( )[ ] ( )IBIIIB BkBBkB lnlnlnln 2 ++−+−= φφφ (3) 
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It is to be noted that BI, mI and BII, mII are the intercept and the slope of the fatigue plots for single 
mode I and single mode II, respectively, whereas kB and km are given by the best fitting procedure of data. 
This best fit procedure provides: 

kB = -5.15E-3, km = 15.45 for GFRP, and kB = 19.34, km = 6.98 for CFRP.  
The comparison between the two materials is shown in fig. 5, together with the curves obtained with 

the present model. The behaviour of the intercept B with the mode mixture for the two materials is 
different, while for the slope m a similar trend can be noticed. 

For the GFRP, the intercept B increases monotonically with φ while the slope m has low values in 
correspondence of the single fracture modes and a maximum value in proximity of φ = 0.5. For the CFRP, 
both Paris parameters have a maximum at intermediate values of φ. 
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Fig. 5. Comparison of Paris parameters calculated for CFRP and GFRP, (left) intercept B, (right) slope m. 

5. Conclusions 

Quasi-static and fatigue delamination experiments have been performed in this work on glass fibre and 
carbon fibre reinforced composites. Materials has been manufactured using the same epoxy resin for the 
two materials. By means of different experimental configurations, single and mixed fracture modes 

(a) (b) (c) 
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(opening, shearing and a mix of them) have been analysed under quasi-static and fatigue loading. Taking 
into account the experimental results obtained, the following remarks can be here summarised. 

Fracture toughness values from quasi-static tests are quite different for these materials: the energy 
required for delamination of GFRP is definitely higher than that required for CFRP. 

Also the variation of this energy with the mode mixture is different: a linear criterion can be used to 
describe the fracture condition of GFRP, while a generalised power criterion is needed for CFRP.  

Fatigue Paris parameters (intercept and slope), that characterise the stable crack propagations, depend 
on the mode mixture; in particular the experimental results show that for GFRP the intercept increases 
with the mode mixture whereas the slope takes a maximum near to φ = 0.5 while for CFRP both the 
intercept and the slope have a maximum at intermediate values of φ. 

A simple quadratic model can be used to describe this dependency, whereas other monotonic models 
found in literature fail when applied to the analysed materials. 

Future developments of the work include the analysis of cases where the mode mixture changes during 
the crack propagation, in order to verify the quadratic interpolation model under more realistic loading 
conditions. Furthermore, a study on other composite materials is going to be performed to assess the role 
of fibres and matrix on the material behaviour under fatigue loading. 
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