21 research outputs found

    Hybrid sausages: modelling the effect of partial meat replacement with broccoli, upcycled brewer's spent grain and insect flours

    Get PDF
    The social, environmental and health concerns associated with the massive consumption of meat products has resulted in calls for a reduction in meat consumption. A simplex lattice design was used for studying the effect of combining broccoli, upcycled brewer’s spent grain (BSG) and insect flours from Tenebrio molitor (IF) as alternative sources of protein and micronutrients, in hybrid sausages formulation. The techno-functional properties of the ingredients and the nutritional and textural properties of nine hybrid sausages were analysed. The effect of adding these ingredients (constituting 35% of a turkey-based sausage) on protein, fat, fibre, iron and zinc content, and textural properties (Texture Profile Analysis (TPA) and Warner–Bratzler parameters) were modelled employing linear regression (0.72 < R2 < 1). The “desirability” function was used for multi-response optimisation of the samples for the highest protein content, optimum chewiness and a* value (closeness to red). The analysis of sensory data for the three optimised samples showed no significant differences in juiciness and odour between the hybrid meat sausage with 22% broccoli, 3% BSG, and 10% IF and the commercial Bratwurst sausage elaborated exclusively with animal protein. Colour, appearance, chewiness and pastiness were rated higher than for the reference. The instrumental chewiness highly correlated with sensorial chewiness (R2 = 0.98). Thus, a strategy introducing less refined and more sustainable sources of protein and micronutrients was successfully employed to model and statistically optimise a meat product formulation with reduced animal protein content.This research was financially supported by the Centre for the Development of Industrial Technology (CDTI) of the Spanish Ministry of Science and Innovation under the grant agreement: TECNOMIFOOD project (CER-20191010); and by the ELINUT project (2021-2022 Food Industry Framework, Basque Government). This is contribution n degrees 1131 of AZTI

    Aplicaciones móviles para evaluar alimentos

    Get PDF
    III Congreso de Alimentación, Nutrición y Dietética. Combinar la nutrición comunitaria y personalizada: nuevos retos

    Lipidómica de membrana aplicada a la personalización de alimentos

    Get PDF
    III Congreso de Alimentación, Nutrición y Dietética. Combinar la nutrición comunitaria y personalizada: nuevos retos

    Fatty Acid Profile of Mature Red Blood Cell Membranes and Dietary Intake as a New Approach to Characterize Children with Overweight and Obesity

    Get PDF
    Obesity is a chronic metabolic disease of high complexity and of multifactorial origin. Understanding the effects of nutrition on childhood obesity metabolism remains a challenge. The aim of this study was to determine the fatty acid (FA) profile of red blood cell (RBC) membranes as a comprehensive biomarker of children's obesity metabolism, together with the evaluation of their dietary intake. An observational study was carried out on 209 children (107 healthy controls, 41 who were overweight and 61 with obesity) between 6 and 16 years of age. Mature RBC membrane phospholipids were analyzed for FA composition by gas chromatography-mass spectrometry (GC-MS). Dietary habits were evaluated using validated food frequency questionnaires (FFQ) and the Mediterranean Diet Quality Index for children (KIDMED) test. Compared to children with normal weight, children with obesity showed an inflammatory profile in mature RBC FAs, evidenced by higher levels of omega-6 polyunsaturated FAs (mainly arachidonic acid, p < 0.001). Children who were overweight or obese presented lower levels of monounsaturated FA (MUFA) compared to children with normal weight (p = 0.001 and p = 0.03, respectively), resulting in an increased saturated fatty acid (SFA)/MUFA ratio. A lower intake of nuts was observed for children with obesity. A comprehensive membrane lipidomic profile approach in children with obesity will contribute to a better understanding of the metabolic differences present in these individuals.This work was supported by the Department of Environment: Territorial Planning: Agriculture and Fisheries of the Basque Country Government (ELKARTEK 2017: and Innovation Fund 2017); the Department of Health of the Basque Government (2017222033: OBESIA 2016-2019); the Centre for the Development of Industrial Technology (CDTI) of the Spanish Ministry of Science and Innovation under the grant agreement: TECNOMIFOOD project (CER-20191010); the INC (INTERNATIONAL NUT AND DRIED FRUIT COUNCIL) under the grant agreement OBINUT project (2016(II)-R01)

    Erythrocyte Membrane Nanomechanical Rigidity Is Decreased in Obese Patients

    Get PDF
    This work intends to describe the physical properties of red blood cell (RBC) membranes in obese adults. The hypothesis driving this research is that obesity, in addition to increasing the amount of body fat, will also modify the lipid composition of membranes in cells other than adipocytes. Forty-nine control volunteers (16 male, 33 female, BMI 21.8 ± 5.6 and 21.5 ± 4.2 kg/m2, respectively) and 52 obese subjects (16 male and 36 female, BMI 38.2± 11.0 and 40.7 ± 8.7 kg/m2, respectively) were examined. The two physical techniques applied were atomic force microscopy (AFM) in the force spectroscopy mode, which allows the micromechanical measurement of penetration forces, and fluorescence anisotropy of trimethylammonium diphenylhexatriene (TMA-DPH), which provides information on lipid order at the membrane polar–nonpolar interface. These techniques, in combination with lipidomic studies, revealed a decreased rigidity in the interfacial region of the RBC membranes of obese as compared to control patients, related to parallel changes in lipid composition. Lipidomic data show an increase in the cholesterol/phospholipid mole ratio and a decrease in sphingomyelin contents in obese membranes. ω-3 fatty acids (e.g., docosahexaenoic acid) appear to be less prevalent in obese patient RBCs, and this is the case for both the global fatty acid distribution and for the individual major lipids in the membrane phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS). Moreover, some ω-6 fatty acids (e.g., arachidonic acid) are increased in obese patient RBCs. The switch from ω-3 to ω-6 lipids in obese subjects could be a major factor explaining the higher interfacial fluidity in obese patient RBC membranes.This work was supported in part by the Basque Government Department of Economic Development, grant No. KK-2019/00028 (OBINTER); the Basque Government Department of Education, grants No. IT1264-19, IT1281-19, IT1270-19, and IT1625-22; the Basque Government Department of Health, grants No. 2019-222030, 2020-333023; Fundación Ramón Areces; and by Centre for the Development of Industrial Technology (CDTI) of the Spanish Ministry of Science and Innovation under the grant agreement: TECNOMIFOOD project (CER-20191010) and Basque Government: IT1625-22

    Fatty Acids and Membrane Lipidomics in Oncology: A Cross-Road of Nutritional, Signaling and Metabolic Pathways

    No full text
    Fatty acids are closely involved in lipid synthesis and metabolism in cancer. Their amount and composition are dependent on dietary supply and tumor microenviroment. Research in this subject highlighted the crucial event of membrane formation, which is regulated by the fatty acids&rsquo; molecular properties. The growing understanding of the pathways that create the fatty acid pool needed for cell replication is the result of lipidomics studies, also envisaging novel fatty acid biosynthesis and fatty acid-mediated signaling. Fatty acid-driven mechanisms and biological effects in cancer onset, growth and metastasis have been elucidated, recognizing the importance of polyunsaturated molecules and the balance between omega-6 and omega-3 families. Saturated and monounsaturated fatty acids are biomarkers in several types of cancer, and their characterization in cell membranes and exosomes is under development for diagnostic purposes. Desaturase enzymatic activity with unprecedented de novo polyunsaturated fatty acid (PUFA) synthesis is considered the recent breakthrough in this scenario. Together with the link between obesity and cancer, fatty acids open interesting perspectives for biomarker discovery and nutritional strategies to control cancer, also in combination with therapies. All these subjects are described using an integrated approach taking into account biochemical, biological and analytical aspects, delineating innovations in cancer prevention, diagnostics and treatments

    Altered Levels of Desaturation and ω-6 Fatty Acids in Breast Cancer Patients’ Red Blood Cell Membranes

    No full text
    Red blood cell (RBC) membrane can reflect fatty acid (FA) contribution from diet and biosynthesis. In cancer, membrane FAs are involved in tumorigenesis and invasiveness, and are indicated as biomarkers to monitor the disease evolution as well as potential targets for therapies and nutritional strategies. The present study provides RBC membrane FA profiles in recently diagnosed breast cancer patients before starting chemotherapy treatment. Patients and controls were recruited, and their dietary habits were collected. FA lipidomic analysis of mature erythrocyte membrane phospholipids in blood samples was performed. Data were adjusted to correct for the effects of diet, body mass index (BMI), and age, revealing that patients showed lower levels of saturated fatty acids (SFA) and higher levels of monounsaturated fatty acid, cis-vaccenic (25%) than controls, with consequent differences in desaturase enzymatic index (∆9 desaturase, &ndash;13.1%). In the case of polyunsaturated fatty acids (PUFA), patients had higher values of &omega;-6 FA (C18:2 (+11.1%); C20:4 (+7.4%)). RBC membrane lipidomic analysis in breast cancer revealed that &omega;-6 pathways are favored. These results suggest new potential targets for treatments and better nutritional guidelines

    Critical Review on Fatty Acid-Based Food and Nutraceuticals as Supporting Therapy in Cancer

    No full text
    Fatty acids have an important place in both biological and nutritional contexts and, from a clinical point of view, they have known consequences for diseases’ onset and development, including cancer. The use of fatty acid-based food and nutraceuticals to support cancer therapy is a multidisciplinary subject, involving molecular and clinical research. Knowledge regarding polyunsaturated fatty acids essentiality/oxidizability and the role of lipogenesis-desaturase pathways for cell growth, as well as oxidative reactivity in cancer cells, are discussed, since they can drive the choice of fatty acids using their multiple roles to support antitumoral drug activity. The central role of membrane fatty acid composition is highlighted for the application of membrane lipid therapy. As fatty acids are also known as biomarkers of cancer onset and progression, the personalization of the fatty acid-based therapy is also possible, taking into account other important factors such as formulation, bioavailability and the distribution of the supplementation. A holistic approach emerges combining nutra- and pharma-strategies in an appropriate manner, to develop further knowledge and applications in cancer therapy
    corecore