2,314 research outputs found

    Search for Majorana fermions in multiband semiconducting nanowires

    Get PDF
    We study multiband semiconducting nanowires proximity-coupled with an s-wave superconductor. We show that when odd number of subbands are occupied the system realizes non-trivial topological state supporting Majorana modes localized at the ends. We study the topological quantum phase transition in this system and analytically calculate the phase diagram as a function of the chemical potential and magnetic field. Our key finding is that multiband occupancy not only lifts the stringent constraint of one-dimensionality but also allows to have higher carrier density in the nanowire and as such multisubband nanowires are better-suited for observing the Majorana particle. We study the robustness of the topological phase by including the effects of the short- and long-range disorder. We show that in the limit of strong interband mixing there is an optimal regime in the phase diagram ("sweet spot") where the topological state is to a large extent insensitive to the presence of disorder.Comment: 4 pages, 3 figures, expanded version includes new results; accepted for publication in PR

    Soft superconducting gap in semiconductor-based Majorana nanowires

    Get PDF
    We develop a theory for the proximity effect in superconductor-semiconductor-normal metal tunneling structures, which have recently been extensively studied experimentally, leading to the observation of transport signatures consistent with the predicted zero-energy Majorana bound states. We show that our model for the semiconductor nanowire having multiple occupied subbands with different transmission probabilities through the barrier reproduces the observed "soft-gap" behavior associated with substantial subgap tunneling conductance. We study the manifestations of the soft gap phenomenon both in the tunneling conductance and in local density of states measurements and discuss the correlations between these two quantities. We emphasize that the proximity effect associated with the hybridization between low-lying states in the multiband semiconductor and the normal metal states in the lead is an intrinsic effect leading to the soft gap problem. In addition to the intrinsic contribution, there may be extrinsic effects, such as, for example, interface disorder, exacerbating the soft gap problem. Our work establishes the generic possibility of an ubiquitous presence of an intrinsic soft gap in the superconductor-semiconductor-normal metal tunneling transport conductance induced by the inverse proximity effect of the normal metal.Comment: published version, 11+ pages, 8 figure

    Dimensional crossover in spin-orbit-coupled semiconductor nanowires with induced superconducting pairing

    Get PDF
    We show that the topological Majorana modes in nanowires much longer than the superconducting coherence length are adiabatically connected with discrete zero-energy states generically occurring in short nanowires. We demonstrate that these zero-energy crossings can be tuned by an external magnetic field and are protected by the particle-hole symmetry. We study the evolution of the low-energy spectrum and the splitting oscillations as a function of magnetic field, wire length, and chemical potential, manifestly establishing that the low-energy physics of short wires is related to that occurring in long wires. This physics, which represents a hallmark of spinless p-wave superconductivity, can be observed in tunneling conductance measurements.Comment: published version, 7 pages, 7 color figure

    Photoresist patterned thick-film piezoelectric elements on silicon

    No full text
    A fundamental limitation of screen printing is the achievable alignment accuracy and resolution. This paper presents details of a thick-resist process that improves both of these factors. The technique involves exposing/developing a thick resist to form the desired pattern and then filling the features with thick film material using a doctor blading process. Registration accuracy comparable with standard photolithographic processes has been achieved resulting in minimum feature sizes of <50 ?m and a film thickness of 100 ?m. Piezoelectric elements have been successfully poled on a platinised silicon wafer with a measured d 33 value of 60 pCN?1

    An almost Poisson structure for the generalized rigid body equations

    Get PDF
    In this paper we introduce almost Poisson structures on Lie groups which generalize Poisson structures based on the use of the classical Yang-Baxter identity. Almost Poisson structures fail to be Poisson structures in the sense that they do not satisfy the Jacobi identity.In the case of cross products of Lie groups, we show that an almost Poisson structure can be used to derive a system which is intimately related to a fundamental Hamiltonian integrable system — the generalized rigid body equations

    Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications

    No full text
    This paper presents a silicon microgenerator, fabricated using standard silicon micromachining techniques, which converts external ambient vibrations into electrical energy. Power is generated by an electromagnetic transduction mechanism with static magnets positioned on either side of a moving coil, which is located on a silicon structure designed to resonate laterally in the plane of the chip. The volume of this device is approximately 100 mm3. ANSYS finite element analysis (FEA) has been used to determine the optimum geometry for the microgenerator. Electromagnetic FEA simulations using Ansoft’s Maxwell 3D software have been performed to determine the voltage generated from a single beam generator design. The predicted voltage levels of 0.7–4.15 V can be generated for a two-pole arrangement by tuning the damping factor to achieve maximum displacement for a given input excitation. Experimental results from the microgenerator demonstrate a maximum power output of 104 nW for 0.4g (g=9.81 m s1) input acceleration at 1.615 kHz. Other frequencies can be achieved by employing different geometries or material

    Discrete rigid body dynamics and optimal control

    Get PDF
    We analyze an alternative formulation of the rigid body equations, their relationship with the discrete rigid body equations of Moser-Veselov (1991) and their formulation as an optimal control problem. In addition we discuss a general class of discrete optimal control problems

    Proximity effect at the superconductor - topological insulator interface

    Get PDF
    We study the excitation spectrum of a topological insulator in contact with an s-wave superconductor, starting from a microscopic model, and develop an effective low-energy model for the proximity effect. In the vicinity of the Dirac cone vertex, the effective model describing the states localized at the interface is well approximated by a model of Dirac electrons experiencing superconducting s-wave pairing. Away from the cone vertex, the induced pairing potential develops a p-wave component with a magnitude sensitive to the structure of the interface. Observing the induced s-wave superconductivity may require tuning the chemical potential close to the Dirac point. Furthermore, we find that the proximity of the superconductor leads to a significant renormalization of the original parameters of the effective model describing the surface states of a topological insulator.Comment: 4+ pages, 3 figures (published version
    corecore