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Dimensional crossover in spin-orbit-coupled semiconductor nanowires with induced
superconducting pairing

Tudor D. Stanescu,1 Roman M. Lutchyn,2 and S. Das Sarma3

1Department of Physics, West Virginia University, Morgantown, WV 26506, USA
2Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA

3Condensed Matter Theory Center, Department of Physics,
University of Maryland, College Park, MD 20742, USA

We show that the topological Majorana modes in nanowires much longer than the superconducting coherence
length are adiabatically connected with discrete zero-energy states generically occurring in short nanowires. We
demonstrate that these zero-energy crossings can be tuned by an external magnetic field and are protected by
the particle-hole symmetry. We study the evolution of the low-energy spectrum and the splitting oscillations as
a function of magnetic field, wire length, and chemical potential, manifestly establishing that the low-energy
physics of short wires is related to that occurring in long wires. This physics, which represents a hallmark of
spinless p-wave superconductivity, can be observed in tunneling conductance measurements.

PACS numbers: 03.65.Yz

I. INTRODUCTION

The theoretical predictions1–11 that proximity effect in-
duced by ordinary s-wave superconductors (SCs), along with
spin-orbit coupling and Zeeman spin splitting, could give rise
to topological superconductivity have led to an intensive ex-
perimental search for Majorana fermions. Following specific
theoretical predictions7,8, a series of recent experimental pa-
pers12–15 have presented evidence for the existence of Majo-
rana modes in quasi-1D semiconductor (SM) nanowires. This
excitement is further enhanced by the fact that these Majo-
rana end modes can, in principle, be used to carry out fault–
tolerant topological quantum computation16,17, as envisioned
originally by Kitaev18 more than 10 years ago.

Any observation of the Majorana mode in solid state mate-
rials is a rather important experimental discovery, therefore it
is legitimate to ask critically whether the recent experimen-
tal findings are truly consistent with the theoretical predic-
tions for the elusive Majorana particle. This is particularly
important in view of the fact that the current experimental ob-
servations (except Ref.13) are based entirely on the existence
of zero–bias conductance peaks (ZBCPs) in the differential
tunneling measurements, which represents a necessary condi-
tion9,19–22 for the existence of the Majorana mode. The suf-
ficient condition necessitates an interference experiment es-
tablishing the non-Abelian nature of these modes, which has
not yet been performed. Since ZBCPs arise quite commonly
in both SCs and SMs, it is of critical importance to care-
fully analyze the various experimental data to see whether
the ZBCP is indeed consistent with the existence of the Ma-
jorana, or is arising from other, presumably more mundane,
physical mechanisms23–26. In addition, in short wires with
lengths comparable to the SC coherence length, it is com-
monly believed that the two end Majorana modes should hy-
bridize and move away from zero bias27,28. The important
practical question of fundamental significance addressed here
concerns the issue of the shortest nanowire length consis-
tent with the manifestation of a zero bias conductance peak
indicating the presence of zero–energy modes in the under-

lying energy spectrum. This issue has become urgent be-
cause the original observation of the ZBCP in long (> 2µm
) InSb nanowires12 has recently been qualitatively reproduced
in short (< 0.5µm) InAs nanowires15, thus raising the impor-
tant question of whether the ZBCPs in long and short wires
are manifestations of the same qualitative physics or not.

The goal of the current work is to critically investigate the
wire length dependence of the ZBCP in SC nanowires and
to clearly identify the nature of the ZBCP in short wires and
its possible relationship to the Majorana zero-energy modes
emerging in long wires. We establish that, for appropriate
values of the magnetic field, the lowest energy mode of the
SC system is characterized by an adiabatic continuity as a
function of wire length and that ZBCPs generated by this
near-zero-energy mode may exist even for wire lengths com-
parable to the SC coherence length. Therefore, although in
short wires the whole notion of a topological phase with non-
local zero-energy Majorana modes becomes meaningless (i.e.
anyons are strongly overlapping and cannot be manipulated
independently), the mode characterized by zero-energy cross-
ings associated with the ZBCPs corresponds to a pair of over-
lapping Majorana states and can be viewed as remnant Ma-
jorana physics carried over from the long-wire topological
phase. We thus believe that the ZBCPs observed in Refs.12

and15 for long and short wires, respectively, are adiabatically
connected and, in some sense, are both manifestations of the
predicted Majorana quasiparticles in topological quasi–1D su-
perconductors7,8. By solving numerically an effective tight-
binding model for multiband SM nanowires with realistic pa-
rameters, we calculate the energy spectrum and the density of
states as functions of the wire length and externally tunable
parameters - magnetic field and chemical potential. We show
that robust zero–energy crossings associated with the remnant
Majorana mode generically occur in short nanowires at dis-
crete values of the magnetic field B.When isolated in the pa-
rameter space, these zero-energy crossings are protected by
the particle-hole symmetry and represent a hallmark of spin-
less p-wave superconductivity. With increasing wire length,
the period of the zero–energy crossings and the amplitude of
the energy splitting oscillations as function of Zeeman field or
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FIG. 1: (Color online) Low-energy semiconductor spectrum in the
non-superconducting phase (orange/light gray) corresponding to the
effective parameters of Eq. (2). The black dots represent the dis-
crete energy values for a short wire with Lx ≈ 400nm and periodic
boundary conditions.

chemical potential decrease. We demonstrate that these rather
generic zero–energy crossings in short wires generate ZBCPs
that may look similar to those produced by topological Majo-
rana zero–energy modes due to the limited experimental res-
olution. The short wire low-energy remnant Majorana mode
becomes the true topological Majorana bound state in the long
wire limit.

II. MODEL

We consider a SM nanowire with rectangular cross section
Ly ×Lz = 50nm×60nm and different wire length values Lx.
In the limit of an infinite wire, Lx → ∞, the Hamiltonian
describing the nanowire reads

HSM
nm(k) = [εn(k) + αRkσy + Γσx]δnm − iαqnmσx, (1)

where k ≡ kx is the wave number, σi are Pauli matrices as-
sociated with the spin degree of freedom, and αR = αa,
is the strength of the Rashba spin-orbit coupling, with a
being the lattice constant. In Eq. (2) n = (ny, nz) and
m = (my,mz) label different confinement–induced sub–
bands described by the transverse wave functions φn(y) ∝
sin(nyπy/Ly) sin(nzπz/Lz), εn(k) describes the SM spec-
trum without SO coupling, and Γ = g∗µBB/2 is the external
Zeeman field along the x-direction. The term containing qnm
represents the inter–band Rashba coupling29 and is given ex-
plicitly in the Appendix. The numerical values of the param-
eters correspond to InAs - effective mass meff = 0.026m0

and Rashba coefficient αR = 0.2eVÅ. This defines spin-orbit
length scale lso ≡ h̄2/meffα ≈ 150nm below which the spin-
orbit coupling is effectively quenched. The low-energy spec-
trum of the wire is shown in Fig. 1. For a finite nanowire, the
spectrum consists of discrete energy levels, as shown in Fig. 1
for a short wire of length Lx = 400nm.

Next, we consider the SM nanowire proximity-coupled to
an s-wave superconductor. The superconductor can be de-
scribed by the BCS density of states ν(E) = νFΘ(|E| −
|∆0|) E√

E2−∆2
0

where νF and ∆0 are the normal density of
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FIG. 2: (Color online) Low energy BdG spectrum as function of the
chemical potential for finite wires of different lengths. The blue (dark
gray) lines correspond to a vanishing Zeeman field, while the orange
(light gray) line represents the lowest energy state for Γ = 0.18meV.

states at the Fermi level and the SC energy gap, respectively.
By integrating out the SC degrees of freedom and lineariz-
ing the frequency dependence, one arrives at an effective low-
energy description of the system valid at energies E � ∆0

29

(see the Appendix). The corresponding BdG Hamiltonian for
quasi–1D nanowire reads

Hn,m(kx) = Z [εn(kx) + αRkxσy + Γσx] δnmτz

+ iZαqnmσx + ∆indσyτy, (2)

where τi are Pauli matrices associated with the particle-hole
degree of freedom and we have used the basis (u↑, u↓, v↑, v↓)
for the Nambu spinors. In Eq. (2) the proximity–induced
renormalization factor is Z = (1 + γ/∆0)−1, where γ =
75µeV is the effective SM–SC coupling, and the induced SC
gap is ∆ind = γ∆0/(γ+∆0) = 50µeV. For these parameters,
the level spacing between different nx states becomes larger
than the SC gap ∆0 = 150µeV in wires with Lx ≤ 0.5µm. In
this regime, changing of the chemical potential leads to sig-
nificant variations of the energy corresponding to the lowest
BdG state and of the number of quasiparticle states within the
SC gap ∆0. This behavior is illustrated in Fig. 2. In the ab-
sence of a Zeeman field (blue/dark gray lines), the minima of
the BdG spectrum roughly correspond to the quantized energy
levels Enxnynz = µ, with (ny, nz) = (1, 1), i.e., the lowest
energy band in Fig. 1, and different nx values. A similar be-
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FIG. 3: (Color online) Low energy BdG spectrum as function of
the Zeeman field for finite wires of different lengths. In the limit
Lx → ∞ a Majorana zero mode appears above a critical field
Γc ≈ 0.1meV. In finite wires, the mode acquires a finite energy due
to the overlap of the states localized at ends of the wire. In very short
wires (e.g., Lx = 0.2µm) the lowest energy state depends almost
linearly on the Zeeman field. States characterized by different values
of nx are coupled by the Rashba interaction and, consequently, the
dependence of their energy on Γ is nonlinear. The chemical potential
is µ = 18meV (bottom of the third band in Fig 1).

havior can be observed when the chemical potential is in the
vicinity of other band minima, e.g., µ = 18meV +∆µ for
the band with (ny, nz) = (2, 1), plus extra contributions from
the lower energy bands. In the presence of a Zeeman field,
the energy of the lowest-energy state decreases and eventu-
ally vanishes at a certain µ-dependent value of Γ. Note that,
as a result of spin-orbit coupling, states with low nx depend
strongly on Γ, while high nx states are weakly Γ-dependent.

III. NUMERICAL RESULTS AND PHYSICAL
INTERPRETATION

In the remainder of the paper, we focus on the
experimentally–relevant parameter regime Lx ∼ ξ > lso
and contrast the properties of the system in this limit with
the ones for a long nanowire (L � ξ). The dependence
of the quasiparticle spectrum on the applied magnetic field
for several values of Lx is shown in Fig.3. The lowest en-
ergy mode (red lines) is characterized by discrete zero–energy
crossings that are robust against disorder, which we checked
explicitly. In spinless superconductors, such isolated cross-
ings are quite robust against perturbations due to the particle-
hole symmetry. Indeed, consider k · p perturbation theory
near a crossing point. The two zero-energy solutions Ψ0 and
Ψ1 are related by particle–hole symmetry, Ψ1 = τxΨ∗0. In
order to open a gap at the crossing point, the off–diagonal
matrix element has to be non–zero, 〈Ψ0|V |Ψ1〉 6= 0, where
V is a generic perturbation that satisfies particle-hole sym-
metry τxV τx = −V T . However, using particle-hole sym-
metry we have V01 = 〈Ψ0|V |Ψ1〉 =

∫
dxΨ∗0VΨ1 =

−
∫
dxΨ∗0τxV

TΨ∗0 = −
∫
dxΨ1V

TΨ∗0 = 0. Thus, particle-
hole symmetry ensures the robustness of isolated zero-energy
crossings. Another way of understanding the robustness of
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FIG. 4: (Color online) Profiles of the lowest–energy states in
nanowires of different lengths. Top panel: Majorana bound state
localized near the end of a long wire (Lx � ξ). In the other panels
the red (dark gray) lines correspond to Γ = 0.05meV and the yellow
(light gray) lines are for Γ = 0.18meV (see Fig. 3). Increasing the
Zeeman field mixes states with different values of nx and generates
modes that become localized near the end of the wire. This mecha-
nism is absent in very short wires (bottom panel, (Lx � ξ)) due to
the wide energy separation between the quantized levels (see Fig 2).

an isolated zero-energy crossing invokes fermion parity - one
can show that the two zero-energy states Ψ0 and Ψ1 actually
correspond to a different fermion parity3. However, the po-
sition of the zero-energy crossing point is non-universal and
changes with the perturbation, since the diagonal matrix ele-
ments are non-zero 〈Ψ0|V |Ψ0〉 = −〈Ψ1|V |Ψ1〉. In order to
get rid of the zero-energy crossings one has to bring another
pair of zero-energy states to the same point in the parame-
ter space. Then, four states would hybridize with each other
since two of them will now have the same fermion parity and
eventually result in the avoided level crossings. This is illus-
trated in Fig. 3 for Lx ≈ 0.4µm. In this case, small variations
of the chemical potential will result in either two close zero-
energy crossings (∆µ < 0), or an avoided crossing (∆µ > 0).
However, these avoided level crossings would still be near-
zero-energy states and may produce ZBCPs in experimental
systems, which invariably have finite energy resolutions.

The emergence of zero–energy crossings in short wires
Lx ≥ ξ > lso is intriguing and one may ask the question
whether it might be possible to use these zero–energy states
for TQC. Indeed, one of the necessary ingredients for TQC
is ground state degeneracy, which can be achieved hypothet-
ically by fine–tuning. However, another important ingredient
is the ability to manipulate the Majorana quasiparticles inde-
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FIG. 5: (Color online) Evolution of the lowest-energy mode with the
size of the wire for different values of the Zeeman splitting Γ = 0.2
meV and Γ = 0.4 meV and chemical potential µ = 0. The shaded
region corresponds to excited quasiparticle states. The size evolution
of the low-energy spectrum corresponding to µ = 13meV is shown
in the Appendix.

pendently. Consider, for example, Kitaevs lattice model18 at
the special point when hopping t is equal to gap |∆|. At this
point, two zero-energy Majorana modes are localized at the
opposite ends of the chain. Thus, their manipulation, even in
the limit of a short wire, would lead to non-Abelian braid-
ing statistics. The situation at hand is different, however,
because the quasi–Majorana modes are strongly overlapping,
see Fig. 4, i.e. the anyons are strongly hybridized and their
independent manipulation is not possible.

The evolution of the low-energy spectrum with the wire
length clearly illustrates the adiabatic continuity of the near-
zero-energy mode, as shown in Fig. 5. Consider first the long-
wire limit Lx � ξ. Above the critical field Γc > 0.1meV,
the system is driven into a topological phase with Majo-
rana zero-energy end states. In a finite system, the split-
ting energy δE between Majorana modes has an oscillatory
pre-factor, in addition to an exponentially-decaying envelope,
δE ∝ sin(kFLx) exp(−Lx/ξ)27. Changing the system size
or the magnetic field, which in turn changes kF and ξ, results
in oscillations of the energy splitting, as shown in Fig. 5 and
Fig. 3. With deceasing Lx, the number of oscillations within
a given Γ interval decreases, while their amplitude increases,
so that the gap separating the lowest-energy mode from the
excited states collapses, or δE exceeds ∆0. At this point,
Lx ≡ Lc, all remnant features of localized Majorana modes
completely disappear. For the nanowires longer than Lc there
is adiabatic continuity of the spectrum indicating that there is
no topological quantum phase transition between the Lx � ξ
and Lx = Lc regimes.

Our results presented in Figs. 2–5 clearly establish that
robust near-zero-energy modes are generic in quasi-1D
nanowires in the presence of spin-orbit coupling, magnetic
field, and SC pairing, in a wide range Lx ≥ ξ > lso. One
of the possible experimental implications of these findings is
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FIG. 6: (Color online) Nearly zero-energy peak in the density of
states (DOS) of a short wire with Lx = 0.4µm as function of the
Zeeman field. The chemical potential is µ = 18meV. A decrease of
the SC gap ∆0 with the increasing Zeeman field (by up to 60%) and
a finite energy resolution of 10µeV are included.

illustrated in Fig. 6. In the presence of a finite energy resolu-
tion, the near-zero-energy mode is converted into a continuous
ZBCP as a function of the magnetic field, as observed experi-
mentally. This behavior is reflected by the dependence of the
calculated density of states (DOS) on the applied magnetic
field (see Fig. 6). Note that the finite width of the zero energy
peak in the DOS is determined by temperature and coupling
to the metallic leads. In short wires, where only a few states
have energies inside the SC gap, this may be the dominant
contribution. The apparent ZBCP will eventually split off and
may come back again at still higher fields.

IV. CONCLUSIONS

We conclude by emphasizing that our findings have impor-
tant implications for the current experiments probing the exis-
tence of Majorana modes in hybrid semiconductor structures.
Except for very short wires characterized by quantized level
spacings much larger than ∆0 and ESO, the system supports
an adiabatically continuous low–energy mode that smoothly
crosses over, as the wire length increases, from a quasi–
Majorana regime characterized by discrete zero–crossings and
energy splitting oscillations to a zero–energy topological Ma-
jorana mode. This mode is generically associated with zero
bias conductance peaks that, in a finite resolution measure-
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ment, extend over a finite magnetic field range. This indicates
that the recent observations in long InSb nanowires12 and in
short InAs nanowires15 are adiabatically connected and are
likely to be the expected signature for the predicted spinless
p–wave superconductivity characterized by the existence of
the Majorana quasiparticles in long nanowires.

This work is supported by Microsoft Q.

Appendix A: Low–energy effective model

The realization of zero–energy Majorana bound states in
solid state systems requires three key ingredients: i) strong
spin–orbit coupling, ii) Zeeman splitting, and iii) super-
conductivity. In semiconductor wire–superconductor hybrid
structures, these ingredients are provided by the spin–orbit
interacting semiconductor, the external magnetic field, and
the proximity induced superconductivity, respectively. The
Hamiltonian that describes the quantum properties of the sys-
tem has the generic form

Htot = HSM +HZeeman +HSC +HSM−SC, (A1)

where different terms correspond to the semiconductor wire,
the applied Zeeman field, the s-wave superconductor, and the
semiconductor–superconductor coupling, respectively. The
semiconductor term, which includes the spin–orbit coupling,
is represented by the tight–binding Hamiltonian

HSM = H0 +HSOI =
∑
i,j,σ

tijc
†
iσcjσ − µ

∑
i,σ

c†iσciσ

+
iα

2

∑
i,δ

[
c†i+δxσyci − c

†
i+δy

σxci + h.c.
]
, (A2)

where H0, which includes the first two terms, describes near-
est neighbor hopping on a simple cubic lattice with lattice
constant a with tii+δ = −t0, where δ are the nearest–
neighbor position vectors. The hopping parameter can be
expressed in terms of the electron effective mass in InAs as
t0 = h̄2/(2meffa

2), with meff = 0.026m0, where m0

is the bare electron mass. In Eq. (A2) the last term repre-
sents the Rashba spin-orbit interaction (SOI), c†i is a spinor
c†i = (c†i↑, c

†
i↓) with c†iσ being the electron creation opera-

tors with spin σ, µ is the chemical potential, α is the Rashba
coupling constant, and σ = (σx, σy, σz) are Pauli matrices.
For a nanowire with rectangular cross section and dimensions
Lx � Ly ∼ Lz , the quantum problem corresponding to
H0 can be solved analytically and we obtain the eigenstates
ψnσ(i) =

∏3
λ=1 φnλ(iλ)χσ , where n = (nx, ny, nz) with

1 ≤ nλ ≤ Nλ, χσ is an eigenstate of the σz spin operator, and

φnλ(iλ) =

√
2

Nλ + 1
sin

πnλiλ
Nλ + 1

, (A3)

with λ = x, y, z and Lλ = aNλ, where a is the lattice con-
stant. Note that, for an infinite wire, the wave vector is a good

quantum number, nx → kx, and the corresponding eigen-
function becomes φkx(x) =

√
2/Lxe

ikxx. The eigenvalues
corresponding to ψnσ are

εn=−2t0

(
cos

πnx
Nx+1

+cos
πny
Ny+1

+cos
πnz
Nz+1

− 3

)
−µ0,

(A4)
wheren = (nx, ny, nz) and the chemical potential µ0 is mea-
sured from the bottom of the first band. For an infinite wire,
the energy band corresponding to confinement–induced band
n = (ny, nz) is given by

εn(kx)=
h̄2k2

x

2meff
− 2t0

(
cos

πny
Ny+1

+cos
πnz
Nz+1

− 2

)
−µ0,

(A5)
Since the number of degrees degrees of freedom in a finite

wire is large (of the order 107–109), yet Majorana physics is
basically controlled by a reduced number of low–energy de-
grees of freedom (of the order 103–104), we project the prob-
lem into the low–energy subspace spanned by a certain num-
ber of low–energy eigenstates of H0. We assume that only a
few bands are occupied, so the low-energy subspace is defined
by the eigenstates satisfying the condition εn < εmax, where
the cutoff energy εmax is of the order 100meV. Using this low-
energy basis, the matrix elements of the SOI Hamiltonian can
be written explicitly as

〈ψnσ|HSOI|ψn′σ′〉 = αδnzn′
z

{
1− (−1)nx+n′

x

Nx + 1
(iσ̂y)σσ′

×
sin πnx

Nx+1 sin
πn′

x

Nx+1

cos πnx
Nx+1 − cos

πn′
x

Nx+1

δnyn′
y
− [x⇔ y]

 , (A6)

where the second term in the parentheses is obtained from the
first term by exchanging the x and y indices. Note that the SOI
Hamiltonian has the structure HSOI = Hx

SOI + Hy
SOI, where

the first term represents the intra-band Rashba coupling, while
Hy

SOI couples bands with different ny indices. For an infinite
wire, the first term in (A6), representing the intra–band con-
tribution, becomes

〈Hx
SOI〉nn′ = αRkxδnn′σy, (A7)

where αR = αa. In the numerical calculations we use αR =
0.2eVÅ). The inter–band spin–orbit coupling corresponding
to the second term in (A6) has the form

〈Hy
SOI〉nn′ = −iαqnn′σx, (A8)

with

qnn′ =
1− (−1)ny+n′

y

Ny + 1

sin
πny
Ny+1 sin

πn′
y

Ny+1

cos
πny
Ny+1 − cos

πn′
y

Ny+1

δnzn′
z
. (A9)

The second ingredient for realizing Majorana fermions in
semiconductor nanowires is represented by the Zeeman field.
We consider that the Zeeman splitting Γ is generated by ap-
plying a magnetic field oriented along the wire (i.e., along the
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FIG. 7: (Color online) Evolution of the quasi–Majorana mode with
the size of the wire for a Zeeman splitting Γ = 0.4 meV and chemical
potential µ = 13meV corresponding to two partially occupied bands.
The rapidly oscillating blue line represents regular Andreev bound
states associated with the low–energy occupied band. In short wires,
the energy of these Andreev bound states may vanish as a function
of the Zeeman field, but they are not adiabatically connected to the
topological Majorana bound states that emerge in long wires.

x-axis), Γ = g∗µBBx/2. The corresponding matrix element
in the low-energy basis are

〈ψnσ|HZeeman|ψn′σ′〉 = Γδnn′δσ̄σ′ , (A10)

where σ̄ = −σ. Adding together these contribution, the ef-
fective Hamiltonian describing the low–energy physics of the
semiconductor nanowire in the presence of a Zeeman field be-
comes

HSM
nn′(kx) = [εn(kx) + αRkxσy + Γσx]δnn′ − iαqnn′σx,

(A11)
where εn(kx) is given by Eq. (A5) and qnn′ by Eq. (A9).
For a finite wire, the bare energy is given by the expression
in Eq. (A4), while the spin–orbit contribution corresponds to
Eq. (A6).

The third key ingredient is the proximity-induced supercon-
ductivity (SC). As a result of the proximity to the s-wave su-
perconductor, a pair potential ∆ is induced in the nanowire
and the energy scale for the quantum states in the semicon-
ductor are renormalized. To account for this effect, we inte-
grate out the SC degrees of freedom and incorporate them as
a surface self–energy term of the form?

Σ(ω) = −γ

[
ω + ∆0σyτy√

∆2
0 − ω2

+ ζτz

]
, (A12)

where γ = 0.3meV is the effective SM-SC coupling, τx and
τz are Pauli matrices in the Nambu space, ∆0 = 1.5meV is
the pair potential of the bulk SC, and ζ is a proximity-induced
shift of the chemical potential. In the present calculations we
take ζ = 0. Within the static approximation

√
∆2

0 − ω2 →
∆0, the self-energy becomes Σ(ω) ≈ −γω/∆0 − γσyτy and
the low-energy physics of the SM nanowire with proximity-
induced SC can be described by an effective Bogoliubov-de

Gennes Hamiltonian. This approximation is valid, strictly
speaking, at energies much lower than ∆0, but represents a
very good approximation even for E ∼ ∆0/2. Explicitly,
the matrix elements of the effective BdG Hamiltonian can be
written as

HBdG(n,n′) = Z [εnδnn′ + Γσxδnn′ + 〈Hx
SOI〉nn′ ] τz

+ Z〈Hy
SOI〉nn′ + ∆σyτy, (A13)

where n = (nx, ny, nz) are quantum numbers for the
nanowire states in the absence of spin–orbit coupling, εn
are the corresponding energies, Γ is the Zeeman splitting,
and 〈Hx

SOI〉nn′ and 〈Hy
SOI〉nn′ are matrix elements for the

intra–band and inter–band Rashba spin–orbit coupling, re-
spectively. Note that energy scale for the SM nanowire is
renormalized by a factor Z = (1 + γ/∆0)−1 due to the SC
proximity effect. This renormalization is determined by the
term in the self-energy (A12) that is proportional to ω (in
the static approximation). The pairing term in Eq. (A13)
is derived from the corresponding contribution to the self-
energy (A12) and is proportional to the induced pair potential
∆ = γ∆0/(γ + ∆0) = 250µeV. For an infinite wire, Eq.
(A13) becomes

Hn,n′(kx) = Z [εn(kx) + αRkxσy + Γσx] δnn′τz

+ iZαqnn′σx + ∆σyτy, (A14)

where n = (ny, nz) labels the confinement–induced bands.
The effective BdG Hamiltonian described by Eq. (A13) (for a
finite system) or Eq. (A14) (for an infinite wire) is diagonal-
ized numerically.

Quasi–Majorana versus regular Andreev bound states. We
emphasize that the adiabatic connection between the quasi–
Majorana mode in short wires and the topological Majorana
mode is, in general, nontrivial. As illustrated in Fig. 7, in short
wires, in addition to the quasi–Majorana mode, there are other
low–energy Andreev bound states that may have vanishing en-
ergy at specific values of Lx and Zeeman splitting. However,
in long wires these modes will be characterized by a finite en-
ergy gap, while the energy of the Majorana mode will vanish.
We note that these regular Andreev bound states are associated
with the lower–energy occupied bands, in contrast with the
Majorana (or quasi–Majorana) mode, which is always associ-
ated with the top occupied band. Experimentally, the contri-
butions arising from these types of low–energy states could be
disentangled by varying the effective length of the wire (e.g.,
using a gate potential): the energy of quasi–Majorana mode
will show weak dependence on the effective wire length, in
sharp contrast with these regular Andreev bound states asso-
ciated with the low–energy bands, which have energies that
depend dramatically on the length of the wire.
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