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Soft superconducting gap in semiconductor-based Majorana nanowires

Tudor D. Stanescu
Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, USA

Roman M. Lutchyn
Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA

S. Das Sarma
Condensed Matter Theory Center and Joint Quantum Institute,

Department of Physics, University of Maryland, College Park, Maryland 20742, USA

We develop a theory for the proximity effect in superconductor–semiconductor–normal-metal
tunneling structures, which have recently been extensively studied experimentally,16–20 leading to
the observation of transport signatures consistent with the predicted zero-energy Majorana bound
states. We show that our model for the semiconductor nanowire having multiple occupied subbands
with different transmission probabilities through the barrier reproduces the observed “soft-gap” be-
havior associated with substantial subgap tunneling conductance. We study the manifestations of
the soft gap phenomenon both in the tunneling conductance and in local density of states measure-
ments and discuss the correlations between these two quantities. We emphasize that the proximity
effect associated with the hybridization between low-lying states in the multiband semiconductor
and the normal metal states in the lead is an intrinsic effect leading to the soft gap problem. In
addition to the intrinsic contribution, there may be extrinsic effects, such as, for example, inter-
face disorder, exacerbating the soft gap problem. Our work establishes the generic possibility of
an ubiquitous presence of an intrinsic soft gap in the superconductor–semiconductor–normal-metal
tunneling transport conductance induced by the inverse proximity effect of the normal metal.

PACS numbers: 71.10.Pm, 03.67.Lx, 03.65.Vf

I. INTRODUCTION

Interfaces between different materials are subjects of
great current interest due to the possibility of exploit-
ing various (emerging) properties of these structures.
One such promising hybrid system is characterized by
an interface between an ordinary s-wave superconductor
(SC) and a semiconductor (SM) with strong spin-orbit
coupling.1–3 It has been shown recently4–7 that, by com-
bining these two conventional materials, one can realize
in the SM a topological p-wave superconducting state
that hosts exotic Majorana zero-energy modes.8–11 The
defects carrying these modes obey non-Abelian braid-
ing statistics,8,12–14 and can be utilized for topological
quantum computation.15 The promise of engineering ex-
otic physics using well-known generic materials has ex-
cited the experimental community, and there are sig-
nificant experimental efforts aimed at finding Majorana
zero-energy states in SM-SC hybrid structures,16–21 fol-
lowing the nanowire proposal of Refs. 6 and 7. Most of
these experiments16–20 pursued the detection of a zero-
bias conductance peak associated with the Majorana
modes through tunneling transport measurements and
found the appearance of the peak at a finite magnetic
field, as predicted.22–32 However, a serious and persistent
problem has been that, in addition to the peak, these ex-
periments reveal a substantial subgap conductance, the
origin of which has been mysterious, controversial, and
highly problematic from the perspective of a theoretical
interpretation of the experimental data. Furthermore,

this soft-gap feature is the main roadblock for Majorana-
based quantum computing proposals,33–37 which require
a hard gap (i.e. vanishing subgap conductance) in the
low-energy spectrum.38

In this article we develop a theory of the prox-
imity effect in superconductor–semiconductor–normal-
metal (SC-SM-NM) nanostructures that provides an
explanation for the origin of the observed “soft-gap,”
a feature originally designating the substantial subgap
conductance revealed by the transport measurements
on nanowire-SC hybrid structures.16–20 We demonstrate
that the very presence of a metallic lead coupled to the
nanowire (i.e., even in the absence of a tunneling current)
modifies the low-energy local density of states (LDOS) in
the SC region of the wire and might generate a smooth
subgap background, i.e., a soft gap. In other words, the
normal metal itself produces an undesirable proximity ef-
fect on the SM wire, partially filling the proximity gap
induced by the SC. In addition to transport, this effect
could be revealed by, e.g., a scanning tunneling micro-
scope (STM) measurement on a SC-SM-NM structure.
Using an effective model, we calculate the LDOS and
the tunneling conductance in realistic settings and show
that the states responsible for the soft gap are associated
with low-lying occupied bands in the nanowire, which
hybridize with the NM states and generate the subgap
background due to the vastly varying transmission prob-
abilities for different transverse subbands. Indeed, differ-
ent transverse subbands are characterized by different hy-
bridization couplings across the barrier with the highest
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FIG. 1. (Color online) Differential conductance versus voltage
for different values of the barrier strength Z. The curves,
illustrating the main result of the BTK theory, correspond to
zero temperature and are normalized by multiplying dI/dV
with the normal-state resistance RN (see Ref. 43). In the
strong-barrier limit (Z → ∞) dI/dV is proportional to the
density of states in the superconductor, but the two quantities
become completely unrelated in the weak-barrier regime.

(lowest)-occupied modes being most weakly (strongly)
coupled to the NM lead. Given that the Majorana peak
is due to states from the highest-occupied band, its ex-
perimental observation requires lowering the confining
potential barrier, which, in turn, increases the transmis-
sion probability for the lowest-occupied subbands. When
this transmission probability becomes of order one (i.e.
strong coupling limit for the given band), the hybridiza-
tion with the metal generates the subgap background.
We note that previous studies39–42 have concluded that
one cannot exactly reproduce the substantial background
subgap density of states seen in the experiments.16–20

The origin of the soft-gap was attributed to some extrin-
sic mechanisms, i.e. interface disorder.44 In this article,
we explicitly show the role of multiband occupancy and of
band-selective SM-NM coupling in the emergence, even
in a clean system, of the soft-gap and argue that this
multiband intrinsic model provides a natural explanation
of the experimental results.

II. THE INTRINSIC SOFT-GAP MECHANISM:
A QUALITATIVE PICTURE

In this section we provide a qualitative picture of the
soft-gap mechanism that summarizes our technical re-
sults. For clarity, we would like to emphasize from the
very beginning two key points. 1) This is an “intrinsic”
mechanism that links the emergence of a smooth in-gap
background – the soft-gap – to the presence of a metallic
lead strongly coupled to the semiconductor nanowire. In

addition, in real structures, there may be “extrinsic” con-
tributions generated, for example, by interface disorder
and potential impurities.44,45 In an isolated SM-SC sys-
tem these states generate sharp subgap spectral features
that depend on the specific disorder realization. How-
ever, the coupling of the nanowire to a normal-metal lead
will broaden these sharp features, leading to a smooth
background. Thus, in general, both the intrinsic and
the extrinsic mechanisms are expected to contribute to
the soft-gap feature. 2) The soft gap occurs due to the
coupling of the nanowire to a normal-metal lead used to
probe the active SM-SC system in a transport measure-
ment. However, this is not an exclusive transport feature
(e.g., a property of the differential conductance dI/dV ),
but also characterizes the equilibrium properties of a NM-
SM-SC system (e.g., the local density of states). In other
words, if dI/dV is characterized by a soft-gap, the LDOS
(inside the barrier region) in the absence of any charge
current will also be characterized by a soft-gap. The fea-
tures associated with these different manifestations of the
soft-gap are in one-to-one correspondence.

The soft-gap phenomenon, as manifested in transport
measurements, can be understood within the Blonder-
Tinkham-Klapwijk (BTK) theory,43 which describes the
crossover from metallic to tunnel junction behavior. Let
us consider a typical system currently used in Majorana
experiments (see, for example, Ref.16). A certain seg-
ment of a SM nanowire is proximity-coupled to an s-
wave SC, while the remaining part of the wire is coupled
to a NM lead through an Ohmic contact. The supercon-
ducting segment, which represents the “active system,”
is separated from the normal part (which represents the
probe) by a potential barrier V (x). For simplicity, let us
assume that V (x) = wδ(x). For a given SM nanowire
band (say n), the transparency of the potential barrier
depends on the strength of the potential, w, as well as the

characteristic Fermi velocity, v
(n)
F . More specifically, in

the normal state (i.e., above some critical temperature)
the transmission coefficient is43 Tn = 1/(1 + Z2

n), where

Zn = w/~v(n)
F is a band-dependent dimensionless barrier

strength. As shown in Fig. 1, the contribution of band
n to the differential conductance dI/dV depends criti-
cally on the barrier strength Zn. In the strong-barrier
(Zn → ∞), i.e., low transparency (Tn � 1), limit the
differential conductance is proportional with the SC den-
sity of states, i.e., the density of states characterizing the
decoupled SC segment separated from the probe by an in-
finite barrier. If there are no in-gap states (as assumed in
the calculation shown in Fig. 1), dI/dV will be charac-
terized in this limit by a “hard” gap. By contrast, for low
barriers (Zn < 1), i.e., high transparencies (Tn . 1), the
differential conductance corresponding to values of the
bias voltage inside the SC gap (i.e., eV < ∆) becomes
finite. As a result, upon lowering the barrier height, the
dI/dV hard gap becomes soft and, eventually, is com-
pletely filled in (see Fig. 1).

Based on the above observations, one concludes that
the soft-gap phenomenon has to be associated with a high
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transparency barrier. However, in order to obtain any
sharp feature in the tunneling conductance (such as the
expected Majorana zero-bias peak), the potential barrier
should be in the low-transparency limit for the top occu-

pied SM band, i.e., the band with the lowest v
(n)
F value.

This top occupied band is, in fact, responsible for the Ma-
jorana physics (hence it is sometimes called the Majorana
band). Consequently, the soft-gap phenomenon observed
in the recent Majorana experiments is based on a mecha-
nism that has two critical ingredients: (i) multiband oc-
cupancy and (ii) band-selective coupling to the external
probe. The height of the potential barrier is experimen-
tally adjusted to ensure the visibility of the zero-bias peak
(ZBP). This corresponds to the top (Majorana) band be-
ing in the weak-coupling (low-transparency) limit. How-
ever, the barrier potential cannot be too strong because
this would lead to a ZBP with vanishingly small weight
(i.e., it leads to the disappearance of the ZBP, as we will
explicitly show below). Consequently, the potential bar-
rier height has to be within a certain optimal window.
These optimal potential values correspond to a highly
transparent barrier for the low-energy occupied bands.
This leads to a finite dI/dV inside the SC gap, i.e., to the
soft-gap phenomenon. Note that single-band models39,48

do not contain the main ingredients identified above and,
consequently, cannot reproduce the background subgap
density of states associated with the soft-gap feature.

Next, we turn to the equilibrium manifestation of the
soft-gap as revealed by the density of states. As dis-
cussed above, transport measurements provide informa-
tion on the density of states of the active system only in
the weak tunneling limit (Zn � 1, Tn � 1). However, in
a multiband wire this condition might not be satisfied for
all occupied bands, since the transparency of the barrier
is band dependent. To gain a better understanding of
the mixed regime that characterizes systems with both
high and low transmission bands, we also calculate the
local density of states, a thermodynamic quantity that
can be measured using, for example, STM. Since some of
the bands are highly transparent, it is critical to take into
account the effect of the normal lead in a non perturba-
tive way. The coupling of a low density SM to an s-wave
SC and a NM lead generates proximity effects that can be
understood within the Green’s function framework. Due
to the SM-SC proximity effect, the SM wire acquires a
spectral gap. This SC proximity effect can be taken into
account through a boundary self-energy ΣSC

ij (ω) that is
due to the exchange of particles between the two sub-
systems. In addition, the coupling to the normal metal
leads to a SM-NM proximity effect that accounts for the
hybridization of SM and NM states and can be described
by an interface self-energy ΣNM

ij (ω) containing both real
and imaginary contributions. Thus the density of states
in the SM is determined by a combined effect of the SC
and the NM. The effect of the normal lead is particularly
important for the density of states below the induced SC
gap, where nominally (i.e., in an active system without
any lead) the quasiparticle density of states would be
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FIG. 2. (Color online) Contribution of a hybridized SM state
with bare energy E0 = 0 to the LDOS integrated over the
semiconductor nanoribbon volume in a SC-SM-NM struc-
ture (lateral view shown in the inset). (a) SM-SC coupling
(γSC 6= 0, γNM = 0). The sharp peaks correspond to Bogoli-
ubov quasiparticles with energies given by the induced SC gap
∆ind ≈ 0.5∆0. (b) SM-NM coupling (γSC = 0, γNM 6= 0).
Each peak corresponds to a SM-NM hybrid state having most
of its weight inside the NM and a small tail inside the SM rib-
bon. (c) Proximity-coupled NM-SM-SC structure (γSC 6= 0,
γNM 6= 0). The hybrid states with energies within the in-
duced SC gap are responsible for the soft-gap phenomenon.
The weight of the corresponding peaks depends on the SM-
NM coupling strength γNM . (d) Same as in panel (c) but
for a system with large SC and NM components (with quasi-
continuum spectra). The green circles are given by an ef-
fective theory obtained by integrating out the SC and NM
degrees of freedom (see Sec. III).

zero. In the presence of the SM-NM coupling, the in-gap
density of states acquires a finite correction induced by
the NM and, consequently, the quasiparticle gap becomes
soft.

To gain further insight, let us consider a hybrid system
consisting of a semiconductor nanoribbon sandwiched be-
tween a superconductor and a normal metal, as shown in
the inset of Fig. 2(a). We focus on the contribution to
the local density of states (LDOS) integrated over the
semiconductor volume of a single SM state (with energy
E0 = 0) that hybridizes with NM and SC states. The ef-
fective SM-SC and SM-NM couplings are γSC and γNM ,
respectively (see Sec. III for the exact definition of these
quantities), and the bulk SC has a gap ∆0. The results
are shown in Fig. 2. Panel (a) corresponds to a SM
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ribbon proximity coupled to a mesoscopic SC only, i.e.,
γSC 6= 0 and γNM = 0. The only contributions within
the bulk SC gap (∆0), i.e., the two sharp peaks, arise
from two Bogoliubov quasiparticles with energies ±∆ind

corresponding to the proximity-induced SC gap. Note
that hybridization with the (discrete) SC states pushes
some of the spectral weight above ∆0. Panel (b) corre-
sponds to a SM nanoribbon coupled to a mesoscopic NM
(γSC = 0, γNM 6= 0). Each peak corresponds to a hy-
brid state that has most of its spectral weight inside the
NM and a small tail (of weight proportional to the peak
height) inside the SM. Panel (c) represents a proximity-
coupled NM-SM-SC structure (γSC 6= 0, γNM 6= 0). In-
dividual peaks correspond to low-energy states character-
ized by nonzero spectral weight inside all three compo-
nents of the system. The soft induced gap emerges as an
energy-dependent modulation of the spectral weight in
the SM tails with maxima near ±∆ind. The heterostruc-
ture corresponding to panel (d) is the same as in (c), but
has large NM and SC components with quasi continuum
spectra. The green circles are determined using an effec-
tive theory obtained by integrating out the SC and NM
degrees of freedom (see Sec. III for details).

We conclude that the soft-gap is due to the emergence
of hybrid states with energies within the induced SC gap
and finite spectral weight inside the SM nanoribbon. The
connection with the transport picture presented above is
straightforward. Indeed, for strong-enough SM-NM cou-
pling (which corresponds to Ohmic contact between the
SM wire and the NM lead in an experimental hybrid
structure), hybrid states with subgap energies extend
throughout the whole system and participate to trans-
port. This results in a finite subgap dI/dV , i.e., the
soft-gap behavior.

We end this section with two important observations.
First, we emphasize that in the experimentally relevant
configuration the coupling between the SM states and
the metallic lead is controlled by two different parame-
ters: the coupling at the SM-NM interface (γNM ) and the
strength/transparency of the potential barrier (i.e., Zn or
Tn). The SM-NM coupling has to be strong enough to
ensure Ohmic contact between the SM nanowire and the
metallic lead. Otherwise, the interface will correspond to
a tunnel junction and the measured dI/dV will be pro-
portional to the LDOS on the SM side of the SM-NM
junction, which is different from the LDOS at the end
of the superconducting segment of the wire (the active
system), i.e., the quantity that carries information about
Majorana physics, including the ZBP. In other words, if
the coupling across the SM-NM interface is weak, the Ma-
jorana band, consisting of states that are confined within
the SC segment of the wire, will be completely decou-
pled from the lead and will not generate any measurable
signature. The other parameter – the strength of the
potential barrier – is responsible for the band-selective
coupling between the SM states and the probe. In a
multiband system, the optimal condition for the obser-
vation of the Majorana ZBP may correspond to a high-

transparency barrier for the low-energy occupied bands,
which leads to the soft-gap phenomenon. Note that the
relative transparencies of these bands depend strongly on
the profile of the barrier potential. In particular, for ex-
perimentally relevant wide barriers (with characteristic
widths of the order of 100 nm) the high- (low-) trans-
parency condition for the low-energy (Majorana) bands
is naturally satisfied, while for a narrow square potential
barrier the high-transparency condition Tn . 1 may not
be satisfied in a system with a small number of occupied
bands. Consequently, multiband calculations based on a
narrow square potential (e.g., Ref. 41) may not capture
the soft-gap phenomenology.

Our second comment concerns the role of extrinsic ef-
fects, in particular that of interface disorder.44 The pres-
ence of disorder leads to the proliferation of low-energy
subgap states. If the disorder is characterized by a short
characteristic length scale, it strongly affects the low-

energy bands with 1/k
(n)
F comparable with this character-

istic length. Consequently, the (isolated) active system
will have a nonvanishing subgap density of states charac-
terized by discrete spectral features. Upon turning on the
coupling to the probe, these features evolve into a smooth
background. We note that, at finite temperature, ther-
mal effects will contribute to an additional broadening
of the spectral features (e.g., of the order kBT for the
differential conductance). In general, both the extrinsic
effect and the intrinsic mechanism described in this work
are expected to contribute to the soft-gap phenomenon
with relative contributions that depend on the details of
the system (e.g., quality of the wire and of the SM-SC
interface, barrier potential profile, barrier height, etc.).
As demonstrated by this study, eliminating the extrin-
sic contributions (i.e., engineering clean structures) does
not guarantee the absence of the soft-gap feature. Also,
while increasing the gate potential can result in a hard
gap, this also suppresses the weight of the Majorana-
induced ZBP, which may become unobservable. As we
will discuss in more detail in Sec. IV, the practical so-
lution for obtaining a hard gap and an observable ZBP
involves engineering clean structures plus low occupancy
and narrow potential barriers.

III. THEORETICAL MODELING

A. Effective tight-binding model

The Hamiltonian describing the NM-SM-SC het-
erostructure has the generic form45

Htot = HSM +HV +HSC +HNM +HSM−SC +HSM−NM,
(1)

where the terms on the right-hand side represent the con-
tributions from the SM wire, gate potential, bulk SC,
NM contact, SM-SC coupling, and SM-NM coupling, re-
spectively. These contributions are incorporated using
realistic tight-binding models that include on-site and
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nearest-neighbor terms defined on cubic lattices with a
lattice constant a. The SM wire has a rectangular cross
section and characteristic length scales Lx � Ly � Lz.
The thin-wire assumption (Lz � Ly) is made to avoid
complications arising from the thickness dependence of
the SC proximity effect which has already been studied
elsewhere.46 The relevant parameters are the lattice con-
stant a = 6.48 Å, the lengths of the superconducting (LS)
and normal (LN ) segments of the wire (LS + LN = Lx),
the height of the potential barrier V maxb , the nearest-
neighbor hopping tSM = 5.67 eV, the Rashba spin-orbit
coupling αR = 200.0 meVÅ, and the Zeeman splitting Γ.
The semiconductor wire is described by a tight-binding
model with nearest-neighbor hopping on a cubic lattice
and includes the effects of spin-orbit coupling. Explicitly,

HSM = H0 +HSOI = −tSM
∑
i,δ,σ

c†i+δσciσ − µ
∑
i,σ

c†iσciσ

+
iα

2

∑
i,δ

[
c†i+δxσyci − c

†
i+δy

σxci + h.c.
]
,

(2)

where H0 includes the first two terms and describes
nearest–neighbor hopping on a simple cubic lattice with
amplitude tSM for a system with chemical potential µ
and the last term represents the Rashba spin-orbit in-
teraction. Here, i = (ix, iy, iz) labels the lattice sites
and δ ∈ {δx, δy, δz} are nearest–neighbor position vec-
tors. In the calculations we consider a cubic lattice with
a lattice constant a = 6.48 Åand we use a value for the
hopping matrix element tSM = 5.67 eV, which corre-
sponds to an effective mass meff = 0.016m0 that char-
acterizes the conduction band of InSb. The coefficient of
the Rashba spin-orbit coupling is αR = αa = 200.0 meV
Å. The wires considered in the numerical calculations
have a rectangular profile with (Lx, Ly, Lz) lattice sites
along the x, y, and z direction, respectively. The wire of
length Lx = LN + LS = 3859 lattice sites has a normal
segment of length 1.1 µm (LN = 1700) partly covered by
the normal metal and a segment of length aLS = 1.4 µm
coupled to the SC [see Fig. 3(a)]. The width of the wire
is 110 Å(Ly = 170) and the thickness is 25 Å(Lz = 38).
In the presence of a magnetic field oriented parallel to the
wire, the Hamiltonian (2) is supplemented by a Zeeman

term HΓ = Γ
∑
i[c
†
i↑ci↓ + h.c.], where Γ is the Zeeman

splitting. The confining gate potential is described by a
purely local contribution to the Hamiltonian,

HV =
∑
i,σ

Vb(i)c
†
iσciσ, (3)

with Vb(x) = V maxb exp[−(x− xb)2/w2
b ], where V maxb is

the height of the gate-induced potential barrier, xb gives
the location of barrier [e.g., xb =0.97 µm in Fig. 3(a)],
and wb = 52 nm is the characteristic width of the barrier.

The superconductor is described at the mean-field level
using a simple tight-binding Hamiltonian characterized

by a constant pairing amplitude ∆0 = 1.5 meV.47 Ex-
plicitly, we have

HSC =
∑
i,j,σ

(
tscij − µSCδij

)
a†iσajσ+∆0

∑
i

(a†i↑a
†
i↓+ai↓ai↑),

(4)

where i and j label SC lattice sites, a†iσ is the creation op-
erator corresponding to a single-particle state with spin
σ localized near site i, the hopping matrix elements are
nonzero, tscij = tSC , only if i and j are nearest neigh-
bors, and µSC represents the chemical potential of the
SC. Similarly, the normal-metal lead is modeled using
a tight-binding Hamiltonian with nearest-neighbor hop-
ping on a cubic lattice with the same lattice constant
a = 6.48 Å. Explicitly,

HNM =
∑
i,j,σ

(
tnmij − µNMδij

)
b†iσbjσ, (5)

where tnmij = tNM if i and j are nearest neighbors and
zero otherwise.

The coupling terms in Eq. (1) include nearest-neighbor
hopping across the SM-SC and SM-NM interfaces with
amplitudes t̃SC and t̃NM, respectively. Explicitly, the cou-
pling terms can be written as

HSM−SC =
∑
i1,j1,σ

[
t̃SCc

†
i1σ
aj1σ + h.c.

]
, (6)

HSM−NM =
∑
i2,j2,σ

[
t̃NMc

†
i2σ
bj2σ + h.c.

]
, (7)

where i1 = (ix, iy, i1z) and j1 = (jx, jy, j1z) label lat-
tice sites near the SM-SC interface inside the SM and
SC regions, respectively, i2 and j2 are neighboring sites
across the SM-NM interface, while t̃SC and t̃NM are the
hopping matrix elements that characterize the couplings
across the two interfaces.

The effective low-energy theory for the proximity ef-
fects at the SM-SC and SM-NM interfaces can be ob-
tained using a Green’s function formalism by integrating
out the SC and NM degrees of freedom. The effective
Green’s function has the form

Gij(ω) =
[
ωδij −HSM

ij −HV
ij − ΣSC

ij (ω)− ΣNM
ij (ω)

]−1
.

(8)
Here i and j are spatial indices and the proximity-induced
SM self-energies are proportional to the surface Green’s
functions of the SC and NM, respectively.47 For example,
integrating out the SC degrees of freedom results in a
local self-energy contribution to the SM Green’s function,

ΣSCi1,i′1(ω) = |t̃SC |2GSC(ω, j1, j
′
1), (9)

where GSC is the Green’s function of the superconduc-
tor, which contains both normal and anomalous contri-
butions, and t̃SC is the hopping across the SM-SC inter-
face between the pairs of sites (i1, j1) and (i′1, j

′
1). Next,
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we assume that the SC is described by the Hamilto-
nian from Eq. (4) and calculate the Green’s function
GSC . A major simplification results from the observa-
tion that GSC(ω, j1, j

′
1) = GSC(ω, |j1 − j′1|) is a short-

range function of |j1 − j′1| that decays much faster than
1/kSM , where kSM is some characteristic wave vector of
the SM (e.g., the largest Fermi k vector in a multiband
system). Consequently, we can use the local approxima-
tion GSC(ω, |j1 − j′1|) ≈ GSC(ω, 0). Within this approx-
imation, the self-energy (9) induced by the superconduc-
tor will correspond to a local contribution acting at the
SM-SC interface. Similar considerations hold for the self-
energy that results by integrating out the normal-metal
degrees of freedom. In the relevant long-wavelength low-
energy regime of interest, these self-energies generate lo-
cal contributions at the SM-SC and SM-NM interfaces
having the explicit forms

ΣSC
ij (ω)=−δijδiz,0

(
γSC

ω+σyτy∆0√
∆2

0−ω2
+γSC

2|tSC|−µSC

2t2SCν(µSC)

)
(10)

ΣNM
ij (ω)= −δijδiz,0

(
i γNM + γNM

2|tNM| − µNM

2t2NMν(µNM)

)
,

(11)

where µSC and µNM are the Fermi energies of SC and
NM, respectively, and σi and τi are Pauli matrices in
the spin and particle-hole spaces, respectively. The
effective couplings γSC and γNM can be expressed as
γx = ν(µx)t̃2x/2, where x represents the SC or the NM,
in terms of the surface density of states at the Fermi
level, ν(µx) =

√
1− (2tx − µx)2/4t2x/|tx|, and the tun-

neling amplitudes at the interfaces, t̃SC and t̃NM.47 We
note that Eq. (10) holds for energies within the bulk SC
gap, i.e., for −∆0 < ω < ∆0. We also note that for
an arbitrary strength of the SM-SC coupling, γSC , the
induced gap does not have a simple analytic expression
and, moreover, depends nontrivially on the thickness of
the SM wire.46 However, in the weak-coupling limit char-
acterized by γSC � ∆0, where ∆0 is the bulk SC gap,
and γSC is much smaller than the interband spacing, we
have

∆ind =
γSC∆0

γSC + ∆0
. (12)

We also note that, in the most general case, the effec-
tive SM-SC coupling can be different for different SM
bands and that proximity-mediated interband couplings
are possible. These refinements are not considered in the
present work, which focuses on the effects of the SM-
NM coupling rather than the proximity effect induced at
the SM-SC interface, which has already been extensively
studied in the literature.

To calculate the local density of states (LDOS)
inside the SM wire, we determine the SM
Green’s function matrix in Eq. (2), Gij(ω) =[
ωδij −HSM

ij −HV
ij − ΣSC

ij (ω)− ΣNM
ij (ω)

]−1
, by nu-

merically performing the matrix inversion for HSM
ij and

HV
ij corresponding to Eqs. (2) and (3), respectively, and

the self-energies given by Eqs. (3) and (4). If R is a
certain region of the wire (e.g., the barrier region, or the
segment covered by the SC), the LDOS integrated over
R (notation DOSR) is given by

ρR(ω) = − 1

π

∑
i∈R

Im[Gii(ω)]. (13)

To test the accuracy of the effective theory given by
Eqs. (8), (10), and (11), we have calculated the LDOS
integrated over the SM volume for the SC-SM-NM lay-
ered structure shown schematically in the inset of Fig.
2a and compared the results with the LDOS obtained
by exactly diagonalizing the full Hamiltonian (which is
straightforward in this geometry). The excellent agree-
ment between the two calculations is shown in Fig. 2(d).

B. Differential conductance

The differential conductance calculations are per-
formed using a simplified model consisting of two cou-
pled chains. We note that implementing this technique
using the more sophisticated model described by Eqs.
(1-7) is straightforward, but involves substantial numer-
ical costs that are not justified by our main goal (i.e., to
show that the manifestations of the soft-gap phenomenon
in the LDOS and in dI/dV are related and stem from the
same source). Specifically, the SM wire is modeled using
a Hamiltonian similar to that from Eq. (2), but having
the proximity-induced SC gap already included at the
mean-field level:

HSM = −
∑
i,δ,σ

[
tSMc

†
i+δxσ

ciσ + t⊥SMc
†
i+δyσ

ciσ

]
−µ
∑
i,σ

c†iσciσ + Γ
∑
i

[c†i↑ci↓ + h.c.]

+
i

2

∑
i,δ

[
αc†i+δxσyci − α

⊥c†i+δyσxci + h.c.
]
, (14)

+∆ind

(ix>LN )∑
i

(c†i↑c
†
i↓ + ci↓ci↑),

where i = (ix, iy) with iy = 1, 2 gives the position along
the two chains, (tSM , t

⊥
SM ) and (α, α⊥) are the intra-

chain and and inter-chain hoppings and Rashba coeffi-
cients, respectively, µ is the chemical potential, and Γ
is the Zeeman field. The normal segment of the double
chain corresponds to the first LN sites, while the rest of
the double chain is coupled to the SC and, as a result, has
an induced pairing potential ∆ind. Note that including
the pair potential directly into the SM Hamiltonian cor-
responds to the static approximation

√
∆2

0 − ω2 ≈ ∆0 in
Eq. (10) for the self-energy (see, for example, Ref. 47
concerning the accuracy of this approximation). A po-
tential barrier given by Eq. (3) is applied in the region
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that separates the normal and superconducting segments
[see Fig. 3(a)]. The normal segment of the wire is in con-
tact with a metallic lead also described by a double-chain
model corresponding to Hamiltonian (5). The parame-
ters used in the calculation correspond to an effective
mass mSM

eff = 0.016m0 for the semiconductor wire and

mNM
eff = 0.4m0 for the metallic lead. The interchain cou-

pling t⊥SM = 4 meV corresponds to a splitting of 8 meV
between the two SM bands. The Rashba coefficients are
αa = 200.0 meV Åand α⊥ = 0. Following the stan-
dard scattering matrix formalism, we solve the eigenvalue
problem for the full tight-binding Bogoliubov-de Gennes
(BdG) Hamiltonian with open boundary conditions and
determine the normal and anomalous reflection ampli-
tudes. More specifically, let us assume that the trans-
verse modes corresponding to the multichain problem are
described by the wave functions Φn(iy), where for two
chains n takes two values corresponding to the symmet-
ric and antisymmetric modes, and consider an incoming
electron with spin σ in channel n. The wave function of
energy E is a four-component spinor with values on the
first two sites of the lead given by

Ψ
(n,σ)
ix=0 =

 δσ↑
δσ↓
0
0

Φn +
∑
n′


rNnn′,σ↑
rNnn′,σ↓
rAnn′,σ↑
rAnn′,σ↓

Φ′n (15)

and

Ψ
(n,σ)
ix=1 =

 δσ↑
δσ↓
0
0

Φne
ikne a +

∑
n′


rNnn′,σ↑
rNnn′,σ↓

0
0

Φ′ne
−ikn

′
e a

+
∑
n′


0
0

rAnn′,σ↑
rAnn′,σ↓

Φ′ne
ikn

′
h a,

(16)

where rN (E) and rA(E) represent normal and anoma-
lous reflection coefficients corresponding to different in-
coming and outgoing channels. The electron and hole
wave vectors corresponding to an eigenstate with en-
ergy E satisfy the equations EnNM (kne ) − µNM = E and
EnNM (knh) − µNM = −E, respectively. Here EnNM (k)
is the energy of the normal lead corresponding to the
transverse mode n. After solving the eigenvalue prob-
lem numerically and determining the reflection coeffi-
cients over the relevant energy range, we calculate the
zero-temperature differential conductance, G0(V ) = dI

dV ,
using the anomalous reflection amplitudes,

dI

dV
=

2e2

h

∑
n,n′

∑
σσ′

|rAnn′,σσ′(V )|2. (17)

The finite temperature conductance can be obtained by
convolving G0 with the derivative of the Fermi function,
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FIG. 3. (Color online) (a) Schematic representation of a SM
Majorana wire proximity coupled to a NM and a SC (top
view). A barrier potential Vb(x) is applied in the region of the
wire that is not covered by the NM or the SC. (b) Spectrum
of the SM wire in the absence of coupling (γSC(NM) = 0).
The chemical potential is placed near the bottom of the third
band. (c) Local density of states integrated over the barrier
region (i.e., around x =1 µm) for a wire coupled to the NM
(only). The smooth background is due to states from the low-
energy bands that penetrate through the barrier and hybridize
strongly with NM states. The peaks correspond to states from
the top occupied band that are confined to the right side of
the barrier and hybridize very weakly with the NM.

G(V, T ) =

∫
dωG0(ω)

1

4T cosh2[(V − ω)/2T ]
. (18)

IV. RESULTS

A. Emergence of the soft-gap in clean
semiconductor-superconductor hybrid structures

Consider a SC-SM-NM hybrid structure consisting of
a SM nanowire proximity coupled to an s-wave SC and a
normal-metal lead, as shown schematically in Fig. 3(a).
The structure is modeled by the Hamiltonian given by
Eq. (1) and the partial density of states obtained by
integrating the LDOS over the barrier region (i.e., the
short nanowire segment that is not covered by the SC
or the NM) is determined using the effective theory de-
scribed in the previous section. First, we focus on the
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proximity effect due to the coupling to the normal lead
and set t̃SC = 0. We assume that the SM wire has several
occupied subbands in the absence of the lead, as shown
in Fig. 3(b). The dependence of the LDOS on the bias
potential for a nonzero coupling to the lead, γNM = 0.2
meV, is shown in Fig. 3(c). Note that the confining bar-
rier potential Vb affects very differently the states corre-
sponding to different transverse subbands. The smooth
background in Fig. 3(c) is due to states from the low-
energy SM bands that penetrate through the barrier and
hybridize strongly with the normal metal, whereas the
peaks originate from the top occupied subband and cor-
respond to states that are confined to the right side of the
barrier and hybridize very weakly with the NM. We note
that increasing the strength of the potential barrier has
two effects. (i) The weight of the sharp peaks decreases
as the states from the topmost occupied band are pushed
out of the barrier region. Eventually, these peaks are no
longer observable. (ii) The modulation of the smooth
background increases and, eventually, this background
develops into a discrete set of peaks corresponding to
states from the low-energy occupied bands. The peaks
associated with a particular band emerge when the cor-
responding states are confined by the barrier potential
within the SC segment of the wire. The broadening in-
duced by the imaginary part of ΣNM from Eq. (11) be-
comes negligible, as these states have exponentially van-
ishing amplitudes outside the SC region, more specifically
at the SM-NM interface.

Next, we discuss the quasiparticle DOS in the pres-
ence of both couplings, t̃SC, t̃NM 6= 0, at Γ = 0. Note
that the soft-gap is a qualitative feature of the multi-
band NM-SM-SC system that is independent of the ap-
plied magnetic field. The results for the (total) DOS in
nanowire are shown in Fig.4(a). Notice the substantial
background contribution. To identify its origin, it is in-
structive to calculate the local density of states integrated
over the relevant segments of the wire. Specifically, we
divide the nanowire into three regions: (1) the segment
of the nanowire covered by the normal lead, (2) the por-
tion covered by the superconductor, and (3) the uncov-
ered portion of the nanowire where the confining gate
potential is applied. The contributions to the DOS from
regions (1)-(3) are shown in Figs. 4(b)-4(d), respectively.
Similar to the normal case shown in Fig. 3(c), the density
of states in the wire consists of a superposition of smooth
contributions given either by delocalized states that span
the whole length of the nanowire or by states that are
confined inside the normal region and sharp peaks emerg-
ing from the states confined inside the superconducting
segment. Note that the states responsible for the sharp
features correspond to the topmost occupied band (the
Majorana band), which are confined inside the SC seg-
ment and, consequently, hybridize very weakly with the
normal lead.
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FIG. 4. (Color online) Density of states (inside the SM wire)
at zero Zeeman field in the presence of both NM and SC cou-
plings. (a) Total DOS inside the SM wire. (b) LDOS inte-
grated over the region covered by the NM contact. (c) LDOS
integrated over the SC region. (d) LDOS integrated over the
barrier region. Note that the sharp peaks are due states that
are confined to the SC region (and penetrate slightly inside
the barrier region). Parameters: γSC = 0.5 meV, γNM = 0.1
meV, Γ = 0, and V max

b = 5 meV.

B. Comparison between LDOS and transport
soft-gap features

As we have argued above, the soft-gap phenomenon
is due to the band-selective coupling between the SM
states and the metallic lead and can be understood as a
band-dependent combination of metallic and tunnel junc-
tion behavior. The soft-gap behavior manifests itself in
transport (as a substantial subgap contribution to the
differential conductance), as well as in the local density
of states. In other words, the critical ingredient is the
presence of a metallic lead coupled to the nanowire and
not the existence of an actual, nonzero charge current in
the system. To firmly establish these points, we calcu-
late both dI/dV and the LDOS using the double-chain
model for two different cases: (a) single-band occupancy
(the chemical potential µSM is positioned near the bot-
tom of the lowest energy band) and (b) two-band occu-
pancy (µSM near the bottom of the second band). The
results are shown in Fig. 5. These results clearly sup-
port three main conclusions. (1) The soft-gap requires
multiband occupancy. Since many of the previous model
calculations were done in the one-dimensional limit (i.e.,
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FIG. 5. (Color online) Differential conductance and LDOS
(integrated over the barrier region – DOSV ) calculated using
the double-chain model. The sharp features represent the con-
ductance of a system with a single occupied band (nb = 1)
at zero temperature, T = 0 (filled black lines). Notice the
quantization of the Majorana-induced zero-bias peak. At fi-
nite temperature (T = 65 mK), the sharp features (includ-
ing the Majorana peak) become suppressed (red line). No
background that could be associated with the soft-gap phe-
nomenon exists for nb = 1. DOSV (not shown) has a similar
structure. When two SM bands are occupied (nb = 2), both
dI/dV (red line with yellow filling) and DOSV (blue line)
show a zero-bias peak on top of a substantial smooth back-
ground. The Majorana peak is strongly suppressed at finite
temperature (here T = 65 mK), but the background is prac-
tically independent of T . In all these calculations the Zeeman
field is Γ = 0.4 meV.

on a single chain), they were not able to capture this
phenomenon. (2) The soft gap observed in the tunneling
conductance, dI/dV , and in the LDOS integrated over
the barrier region, DOSV , are two manifestations of the
same phenomenon, i.e., the result of the strong coupling
to the normal lead. (3) The (intrinsic) soft-gap can be
clearly eliminated by either realizing the single-band oc-
cupancy limit, or by completely eliminating the metallic
lead (i.e., using a probe other than transport to observe
the Majorana bound states). A third possibility involv-
ing reduced occupancy in combination with an optimized
barrier potential will be discussed below.

C. Controlling the soft-gap feature

We now consider the dependence of the soft-gap fea-
ture on the applied magnetic field and the potential bar-
rier. To understand the experimental measurements in-
volving tunneling spectroscopy, it is instructive to com-
pare the magnetic field dependence of the LDOS in re-
gion (3) (the barrier region) and the field dependence of
the differential conductance. The results are shown in
Fig. 6. In both cases one can notice a substantial subgap
background and the emergence of a zero-bias peak (ZBP)
above a certain critical value of the magnetic field. This
peak is due to a Majorana mode localized at the left end
of region (2) and leaking out into the barrier region. The

D
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)

FIG. 6. (Color online) (a) Magnetic field dependence of the
LDOS integrated over the barrier region for a system de-
scribed by Eqs. (8), (10), and (11) with γNM = 0.1 meV,
γSC = 0.5 meV, and LS =1.1 µm. (b) Differential conduc-
tance for a double-chain wire with ∆ind = 0.25 meV, LS =1.1
µm, and T = 0.65 mK. The curves (shifted for clarity) corre-
spond to Zeeman fields from 0 (bottom) to 0.8 meV (top). A
Majorana peak emerges above a certain critical field and splits
at high Zeeman fields. Note the close correspondence between
the two types of calculations which involve systems described
by different models and having different parameters.

splitting of the ZBP at large values of the Zeeman field
(see Fig. 6) is due to the overlap of the wave functions
corresponding to the Majorana bound states localized at
the opposite ends of the superconducting segment of the
wire.49,50 One can notice the close similarity between the
qualitative features characterizing the two quantities.

The effective coupling between the normal-metal lead
and the active system can, in principle, be controlled
through the gate-tunable potential barrier.16–20 The de-
pendence of DOSV and dI/dV on the height of the bar-
rier potential for a Gaussian potential with wb = 52nm is
shown in Fig. 7. One can notice that the barrier affects
the subgap states and the Majorana zero-energy state
differently. Indeed, let us consider the high barrier limit
(i.e., barrier height larger than the chemical potential in
the SM nanowire) and study the evolution of the subgap
density of states. Upon a decrease of the barrier height,
the soft-gap feature is emerging first, and then the zero-
energy peak becomes visible. This fact confirms that
the soft-gap originates from the low-lying subbands that
can more easily penetrate through the barrier and thus
become strongly hybridized with the metallic lead. By
contrast, the Majorana zero-energy peak originates from
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FIG. 7. (Color online) Dependence of the LDOS integrated
over the barrier region (left) and of dI/dV (right) on the bar-
rier height V max

b . Note that increasing the barrier height re-
duces the amplitude of the zero-bias peak as the Majorana
bound state penetrates less inside the barrier region and de-
couples from the lead. In addition, varying the barrier poten-
tial changes the energy of the delocalized states that extend
throughout the wire and, as a result, modifies the profile of
the soft-gap. The finite-energy sharp features present near
the induced SC gap edge (∆ind ≈ 0.25 meV, left panel) are
due to the states from the second highest occupied band that
become confined inside the superconducting region. On the
other hand, the smooth low-energy maximum corresponding
to V max

b = 30 meV is generated by a state from the second
highest occupied band that crosses the chemical potential and
is confined inside the normal segment of the wire. The inter-
band spacings are 35 meV (left) and 8 meV (right) and the
Zeeman field is Γ = 0.4 meV.

the weakly coupled topmost band. We also find that
the change of the potential barrier modifies the energies
of the extended states that contribute to the soft-gap
and, consequently, modifies its profile. We conclude that
the structures used in current tunneling experiments16–20

are not optimally designed for suppressing the soft-gap
feature (e.g. by increasing the barrier potential height)
while maintaining the visibility of the Majorana zero-bias
peak. We identify the main problem as the broad barrier
profile that characterizes these structures.

Finally, we address a question of significant practical
importance: if merely increasing the height of the poten-
tial barrier is likely to generate the disappearance of the
ZBP before producing a hard gap, what should be done
to ensure the coexistence of both the ZBP and the hard
gap? The solution involves two basic requirements: i) re-
ducing the occupancy of the nanowire and ii) generating
a very narrow barrier. Of course, this assumes that all
extrinsic effects are already eliminated by carefully en-
gineering clean hybrid structures. The first requirement
is less restrictive than the single-band occupancy condi-
tion (if this can be realized, the soft-gap feature is au-

Energy (meV)
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FIG. 8. (Color online) Comparison between the differential
conductance characterizing two hybrid systems with ∆ind =
0.25 meV, LS =2 µm, Γ =0.4 meV and different potential bar-
riers (see inset). The two barriers have the same transparency
for the Majorana band, but significantly different transparen-
cies for the low-energy occupied band. This results in the two
Majorana ZBPs having the same weight and the soft-gap be-
ing strongly suppressed in the system with a narrow barrier.

tomatically eliminated). The rationale behind both the
first and the second requirement is to minimize the ratio
between the transparencies corresponding to the lowest-
energy band and the topmost band. These could still be
significantly different, but this difference should not be
more than about an order of magnitude. For example, a
transparency for the Majorana band TM = 0.01 (which
corresponds to ZM ≈ 10 for a δ-function-type barrier)
ensures the visibility of the Majorana ZBP. If the lowest-
energy band has a transparency T1 = 10TM (which cor-
responds to Z1 = 3), it will still be in the weak-coupling
limit and will generate an extremely weak in-gap back-
ground. Satisfying these conditions using a broad barrier
may be extremely difficult (it requires very small inter-
band gaps, i.e., a thick wire with just a couple of occupied
bands). On the other hand, using a narrow barrier fa-
cilitates the realization of these conditions. In fact, we
believe that the simplifying assumption of a barrier that
can be modeled by a single-site/δ-function-like potential
has prevented the observation of soft-gap features in pre-
vious multiband model calculations.40–42 To illustrate the
major difference between the effect of broad and narrow
barriers, we calculate the differential conductance for two
systems having the same parameters, except for the bar-
rier potentials, which have different profiles, as shown in
the insets of Fig. 8. The heights of the two barriers were
adjusted so that the two systems have the same trans-
parency for the Majorana band. This translates into the
two Majorana ZBPs having the same weight (note that
the ZBP corresponding to the wide barrier sits on top of
the smooth subgap background generated by states from
the lowest-energy band). The strong suppression of the
soft-gap feature in the system with a narrow barrier is
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due to the fact that the transparency of the low-energy
band (with a Fermi energy of about 8 meV) is much
smaller than the transparency of the same band in the
wide barrier system. This can be easily understood by
comparing the Fermi energy with the heights of the two
barriers.

V. CONCLUSIONS

We have developed a comprehensive theory for the
NM-SM-SC hybrid heterostructures using realistic mod-
els for the semiconductor nanowire, the normal-metal
lead, and the s-wave superconductor. We have identified
a distinct physical mechanism, namely an “inverse prox-
imity” effect by the normal metal on the semiconductor
nanowire at the semiconductor-metal interface, which by
itself generically leads to soft-gap features in the multi-
band wire system by virtue of producing substantial sub-
gap conductance. This inverse proximity effect is, in prin-
ciple, always present, and has a strength that depends on
the details of the tunnel barrier at the semiconductor–
normal-metal junction and on the number of conducting
subbands active in the nanowire. Our model, without
including any external effects such as interface disorder,
captures the phenomenology observed in recent Majo-
rana experiments16–20 and allows one to explain the so-
called soft-gap issue. We show that the substantial sub-
gap conductance in these experiments originates from the
multiple subbands in the nanowire having vastly different

transmission probabilities through the barrier defined by
the gate. We emphasize that this is an intrinsic contri-
bution to the soft-gap issue; the extrinsic effects such as
interface disorder will further exacerbate this problem.
Thus our results have important implications for the on-
going Majorana experiments where the soft-gap issue is
the main roadblock to braiding and performing quantum
computation with Majorana modes. We show that, to
interpret the experimental results,16–20 one has to con-
sider different coupling of the occupied subbands in the
nanowire to the normal-metal lead. By calculating local
density of states and differential tunneling conductance,
we show that the “Majorana band” (i.e., highest sub-
band) has generically the weakest coupling to the lead.
Therefore, one has to lower the barrier in order to in-
crease signal-to-noise ratio which, in turn, increases the
normal-metal coupling for the lowest occupied subbands
leading to a significant hybridization of these states with
the lead (i.e., the soft-gap problem). To reduce the sub-
gap background, we suggest decreasing the NM-nanowire
coupling and the length of the normal nanowire segment,
realizing narrow barriers, or using alternative, less inva-
sive detection schemes involving an STM26 or quantum
dots,51,52 where the transmission between normal lead
and nanowire can be controlled by the intradot Coulomb
energy rather than the tunneling barrier.
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