129 research outputs found

    Extended Remediation of Sleep Deprived-Induced Working Memory Deficits Using fMRI-Guided Transcranial Magnetic Stimulation

    Get PDF
    STUDY OBJECTIVES: We attempted to prevent the development of working memory (WM) impairments caused by sleep deprivation using fMRI-guided repetitive transcranial magnetic stimulation (rTMS). Novel aspects of our fMRI-guided rTMS paradigm included the use of sophisticated covariance methods to identify functional networks in imaging data, and the use of fMRI-targeted rTMS concurrent with task performance to modulate plasticity effects over a longer term. DESIGN: Between-groups mixed model. SETTING: TMS, MRI, and sleep laboratory study. PARTICIPANTS: 27 subjects (13 receiving Active rTMS, and 14 Sham) completed the sleep deprivation protocol, with another 21 (10 Active, 11 Sham) non-sleep deprived subjects run in a second experiment. INTERVENTIONS: Our previous covariance analysis had identified a network, including occipital cortex, which demonstrated individual differences in resilience to the deleterious effects of sleep deprivation on WM performance. Five Hz rTMS was applied to left lateral occipital cortex while subjects performed a WM task during 4 sessions over the course of 2 days of total sleep deprivation. MEASUREMENTS AND RESULTS: At the end of the sleep deprivation period, Sham sleep deprived subjects exhibited degraded performance in the WM task. In contrast, those receiving Active rTMS did not show the slowing and lapsing typical in sleep deprivation, and instead performed similarly to non- sleep deprived subjects. Importantly, the Active sleep deprivation group showed rTMS-induced facilitation of WM performance a full 18 hours after the last rTMS session. CONCLUSIONS: Over the course of sleep deprivation, these results indicate that rTMS applied concurrently with WM task performance affected neural circuitry involved in WM to prevent its full impact

    Dietary Intake of n-6 Fatty Acids Modulates Effect of Apolipoprotein A5 Gene on Plasma Fasting Triglycerides, Remnant Lipoprotein Concentrations, and Lipoprotein Particle Size

    Get PDF
    Background— Apolipoprotein A5 gene (APOA5) variation is associated with plasma triglycerides (TGs). However, little is known about whether dietary fat modulates this association. Methods and Results— We investigated the interaction between APOA5 gene variation and dietary fat in determining plasma fasting TGs, remnant-like particle (RLP) concentrations, and lipoprotein particle size in 1001 men and 1147 women who were Framingham Heart Study participants. Polymorphisms –1131T>C and 56C>G, representing 2 independent haplotypes, were analyzed. Significant gene–diet interactions between the –1131T>C polymorphism and polyunsaturated fatty acid (PUFA) intake were found (PG polymorphism. The –1131C allele was associated with higher fasting TGs and RLP concentrations (P6% of total energy). No heterogeneity by sex was found. These interactions showed a dose-response effect when PUFA intake was considered as a continuous variable (P<0.01). Similar interactions were found for the sizes of VLDL and LDL particles. Only in carriers of the –1131C allele did the size of these particles increase (VLDL) or decrease (LDL) as PUFA intake increased (P<0.01). We further analyzed the effects of n-6 and n-3 fatty acids and found that the PUFA–APOA5 interactions were specific for dietary n-6 fatty acids. Conclusions— Higher n-6 (but not n-3) PUFA intake increased fasting TGs, RLP concentrations, and VLDL size and decreased LDL size in APOA5 –1131C carriers, suggesting that n-6 PUFA–rich diets are related to a more atherogenic lipid profile in these subjects.Corella Piquer, Maria Dolores, [email protected]

    Using Genetic Technologies To Reduce, Rather Than Widen, Health Disparities

    Get PDF
    Evidence shows that both biological and nonbiological factors contribute to health disparities. Genetics, in particular, plays a part in how common diseases manifest themselves. Today, unprecedented advances in genetically based diagnoses and treatments provide opportunities for personalized medicine. However, disadvantaged groups may lack access to these advances, and treatments based on research on non-Hispanic whites might not be generalizable to members of minority groups. Unless genetic technologies become universally accessible, existing disparities could be widened. Addressing this issue will require integrated strategies, including expanding genetic research, improving genetic literacy, and enhancing access to genetic technologies among minority populations in a way that avoids harms such as stigmatization

    Linking model design and application for transdisciplinary approaches in social-ecological systems

    Get PDF
    This work was supported by the US National Science Foundation through the Mountain Sentinels Research Coordination Network (NSF #1414106), the Swiss National Science Foundation through MtnPaths – Pathways for global change adaptation of mountain socio-ecological systems (#20521L_169916), and the Center for Collaborative Conservation at Colorado State University.As global environmental change continues to accelerate and intensify, science and society are turning to trans- disciplinary approaches to facilitate transitions to sustainability. Modeling is increasingly used as a technological tool to improve our understanding of social-ecological systems (SES), encourage collaboration and learning, and facilitate decision-making. This study improves our understanding of how SES models are designed and applied to address the rising challenges of global environmental change, using mountains as a representative system. We analyzed 74 peer-reviewed papers describing dynamic models of mountain SES, evaluating them according to characteristics such as the model purpose, data and model type, level of stakeholder involvement, and spatial extent/resolution. Slightly more than half the models in our analysis were participatory, yet only 21.6% of papers demonstrated any direct outreach to decision makers. We found that SES models tend to under-represent social datasets, with ethnographic data rarely incorporated. Modeling efforts in conditions of higher stakeholder diversity tend to have higher rates of decision support compared to situations where stakeholder diversity is absent or not addressed. We discuss our results through the lens of appropriate technology, drawing on the concepts of boundary objects and scalar devices from Science and Technology Studies. We propose four guiding principles to facilitate the development of SES models as appropriate technology for transdisciplinary applications: (1) increase diversity of stakeholders in SES model design and application for improved collaboration; (2) balance power dynamics among stakeholders by incorporating diverse knowledge and data types; (3) promote flexibility in model design; and (4) bridge gaps in decision support, learning, and communication. Creating SES models that are appropriate tech- nology for transdisciplinary applications will require advanced planning, increased funding for and attention to the role of diverse data and knowledge, and stronger partnerships across disciplinary divides. Highly contextualized participatory modeling that embraces diversity in both data and actors appears poised to make strong contributions to the world’s most pressing environmental challenges.PostprintPeer reviewe

    Identification of Circulating Proteins associated With General Cognitive Function among Middle-Aged and Older adults

    Get PDF
    Identifying circulating proteins associated with cognitive function may point to biomarkers and molecular process of cognitive impairment. Few studies have investigated the association between circulating proteins and cognitive function. We identify 246 protein measures quantified by the SomaScan assay as associated with cognitive function (p \u3c 4.9E-5, n up to 7289). Of these, 45 were replicated using SomaScan data, and three were replicated using Olink data at Bonferroni-corrected significance. Enrichment analysis linked the proteins associated with general cognitive function to cell signaling pathways and synapse architecture. Mendelian randomization analysis implicated higher levels of NECTIN2, a protein mediating viral entry into neuronal cells, with higher Alzheimer\u27s disease (AD) risk (p = 2.5E-26). Levels of 14 other protein measures were implicated as consequences of AD susceptibility (p \u3c 2.0E-4). Proteins implicated as causes or consequences of AD susceptibility may provide new insight into the potential relationship between immunity and AD susceptibility as well as potential therapeutic targets
    • …
    corecore