158 research outputs found

    Co-amplification of the HER2 gene and chromosome 17 centromere: a potential diagnostic pitfall in HER2 testing in breast cancer

    Get PDF
    Co-amplification of the centromere on chromosome 17 (CEP17) and HER2 can occur in breast cancer. Such aberrant patterns (clusters) on CEP17 can be misleading to calculate the HER2/CEP17 ratio, and thus underreporting of HER2 amplification. We identified 14 breast cancers retrospectively with HER2/CEP17 co-amplification and performed FISH (fluorescence in situ hybridization) with additional chromosome 17 probes (17p11.1-q11.1, 17p11.2-p12, TP53 on 17p13.1, RARA on 17q21.1-3 and TOP2 on 17q21.3-22) to characterize the spanning of the amplicon in these cases. Furthermore, the HER2 status was analyzed by means of HER2 silver in situ hybridization (SISH) and immunohistochemistry (IHC). The co-amplification of HER2/CEP17 was compared between the three institutions. TP53 was eusomic in all cases, 17p11.2-p12 in 79% (11/14), whereas 17p11.1-q11.1 showed chromosomal gain in all cases. RARA was amplified in 10/14 cases (71%) and TOP2 in 3/14 cases (21%). HER2 was amplified with FISH/SISH in all 14 cases. 9/14 tumors were 3+ IHC positive (64%) and 3 cases were 2+ IHC positive. In our cohort the CEP17 amplicon almost always involves the HER2 but not the TOP2 locus. Overall agreement on HER2/CEP17 ratio (when applying ASCO/CAP guidelines) was only 64% (9/14 cases) between the institutions. Discrepant ratios varied from 1.1 to 14.3. The HER2/CEP17 co-amplification is not defined in the ASCO/CAP guidelines, and may result in inaccurate HER2-FISH/SISH status, particularly if only the calculated HER2/CEP17 ratio is reported. It is recommended to report separate CEP17 and HER2 signals in complex HER2/CEP17 pattern

    ALK Status Testing in Non–Small-Cell Lung Carcinoma by FISH on ThinPrep Slides with Cytology Material

    Get PDF
    Introduction:Oncogenic anaplastic lymphoma kinase (ALK) gene rearrangements in non–small-cell lung carcinomas (NSCLC) provide the basis for targeted therapy with crizotinib and other specific ALK inhibitors. Treatment eligibility is conventionally determined by the Food and Drug Administration–approved companion diagnostic fluorescence in situ hybridization (FISH) assay on paraffin-embedded tissue (PET). On limited samples such as fine needle aspiration–derived cytoblocks, FISH for ALK is often uninformative. FISH performed on liquid-based ThinPrep slides (ThinPrep-FISH) may represent a robust alternative.Methods:Two hundred thirty cytology samples from 217 patients with advanced NSCLC, including a consecutive series of 179 specimens, were used to generate matched ThinPrep slides and paraffin cytoblocks. The same ThinPrep slides used for cytologic diagnosis were assessed by standard ALK break-apart two-color probe FISH, after etching of tumor areas. Ultrasensitive ALK immunohistochemistry (IHC) on corresponding cytoblocks [D5F3 antibody, OptiView signal amplification] served as the reference data set.Results:ThinPrep-FISH ALK signals were robust in 228 of 230 cases and not compromised by nuclear truncation inherent in paraffin-embedded tissue–FISH; only two samples displayed no signals. Nine of 178 informative cases (5%) in the consecutive series and 18 of 228 informative cases (7.8%) overall were ALK rearranged by ThinPrep-FISH. In 154 informative matched ThinPrep-FISH and cytoblock-IHC samples, 152 were concordant (10, 6.5% ALK status positive; 142, 92.2% ALK status negative), and two (1.3%) were ThinPrep-FISH positive but IHC negative (sensitivity 100%, specificity 98.6%, overall agreement 98.7%).Conclusion:Detection of ALK gene rearrangements in liquid cytology ThinPrep slides derived from patients with NSCLC can be confidently used for clinical ALK molecular testing

    Development of automated brightfield double In Situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence In Situ hybridization (FISH)

    Get PDF
    BACKGROUND: Human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy. However, current HER2 FISH procedures are labor intensive, manual methods that require skilled technologists and specialized fluorescence microscopy. Furthermore, FISH slides cannot be archived for long term storage and review. Our objective was to develop an automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) and test the assay performance with dual color HER2 FISH evaluated breast carcinomas. METHODS: The BDISH assay was developed with the nick translated dinitrophenyl (DNP)-labeled HER2 DNA probe and DNP-labeled CEN 17 oligoprobe on the Ventana BenchMark(® )XT slide processing system. Detection of HER2 and CEN 17 signals was accomplished with the silver acetate, hydroquinone, and H(2)O(2 )reaction with horseradish peroxidase (HRP) and the fast red and naphthol phosphate reaction with alkaline phosphatise (AP), respectively. The BDISH specificity was optimized with formalin-fixed, paraffin-embedded xenograft tumors, MCF7 (non-amplified HER2 gene) and BT-474 (amplified HER2 gene). Then, the BDISH performance was evaluated with 94 routinely processed breast cancer tissues. Interpretation of HER2 and CEN 17 BDISH slides was conducted by 4 observers using a conventional brightfield microscope without oil immersion objectives. RESULTS: Sequential hybridization and signal detection for HER2 and CEN 17 ISH demonstrated both DNA targets in the same cells. HER2 signals were visualized as discrete black metallic silver dots while CEN 17 signals were detected as slightly larger red dots. Our study demonstrated a high consensus concordance between HER2 FISH and BDISH results of clinical breast carcinoma cases based on the historical scoring method (98.9%, Simple Kappa = 0.9736, 95% CI = 0.9222 – 1.0000) and the ASCO/CAP scoring method with the FISH equivocal cases (95.7%, Simple Kappa = 0.8993%, 95% CI = 0.8068 – 0.9919) and without the FISH equivocal cases (100%, Simple Kappa = 1.0000%, 95% CI = 1.0000 – 1.0000). CONCLUSION: Automated BDISH applications for HER2 and CEN 17 targets were successfully developed and it might be able to replace manual two-color HER2 FISH methods. The application also has the potential to be used for other gene targets. The use of BDISH technology allows the simultaneous analyses of two DNA targets within the context of tissue morphological observation

    The expression of TRMT2A, a novel cell cycle regulated protein, identifies a subset of breast cancer patients with HER2 over-expression that are at an increased risk of recurrence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over-expression of <it>HER2 </it>in a subset of breast cancers (<it>HER2</it>+) is associated with high histological grade and aggressive clinical course. Despite these distinctive features, the differences in response of <it>HER2</it>+ patients to both adjuvant cytotoxic chemotherapy and targeted therapy (e.g. trastuzumab) suggests that unrecognized biologic and clinical diversity is confounding treatment strategies. Furthermore, the small but established risk of cardiac morbidity with trastuzumab therapy compels efforts towards the identification of biomarkers that might help stratify patients.</p> <p>Methods</p> <p>A single institution tissue array cohort assembled at the Clearview Cancer Institute of Huntsville (CCIH) was screened by immunohistochemistry staining using a large number of novel and commercially available antibodies to identify those with a univariate association with clinical outcome in <it>HER2</it>+ patients. Staining with antibody directed at TRMT2A was found to be strongly associated with outcome in <it>HER2</it>+ patients. This association with outcome was tested in two independent validation cohorts; an existing staining dataset derived from tissue assembled at the Cleveland Clinic Foundation (CCF), and in a new retrospective study performed by staining archived paraffin blocks available at the Roswell Park Cancer Institute (RPCI).</p> <p>Results</p> <p>TRMT2A staining showed a strong correlation with likelihood of recurrence at five years in 67 <it>HER2</it>+ patients from the CCIH discovery cohort (HR 7.0; 95% CI 2.4 to 20.1, p < 0.0004). This association with outcome was confirmed using 75 <it>HER2</it>+ patients from the CCF cohort (HR 3.6; 95% CI 1.3 to 10.2, p < 0.02) and 64 patients from the RPCI cohort (HR 3.4; 95% CI 1.3-8.9, p < 0.02). In bivariable analysis the association with outcome was independent of grade, tumor size, nodal status and the administration of conventional adjuvant chemotherapy in the CCIH and RPCI cohorts.</p> <p>Conclusions</p> <p>Studies from three independent single institution cohorts support TRMT2A protein expression as a biomarker of increased risk of recurrence in <it>HER2+ </it>breast cancer patients. These results suggest that TRMT2A expression should be further studied in the clinical trial setting to explore its predictive power for response to adjuvant cytotoxic chemotherapy in combination with <it>HER2 </it>targeted therapy.</p

    Evaluation of chronic lymphocytic leukemia by oligonucleotide-based microarray analysis uncovers novel aberrations not detected by FISH or cytogenetic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytogenetic evaluation is a key component of the diagnosis and prognosis of chronic lymphocytic leukemia (CLL). We performed oligonucleotide-based comparative genomic hybridization microarray analysis on 34 samples with CLL and known abnormal karyotypes previously determined by cytogenetics and/or fluorescence <it>in situ </it>hybridization (FISH).</p> <p>Results</p> <p>Using a custom designed microarray that targets >1800 genes involved in hematologic disease and other malignancies, we identified additional cryptic aberrations and novel findings in 59% of cases. These included gains and losses of genes associated with cell cycle regulation, apoptosis and susceptibility loci on 3p21.31, 5q35.2q35.3, 10q23.31q23.33, 11q22.3, and 22q11.23.</p> <p>Conclusions</p> <p>Our results show that microarray analysis will detect known aberrations, including microscopic and cryptic alterations. In addition, novel genomic changes will be uncovered that may become important prognostic predictors or treatment targets for CLL in the future.</p

    Genome-wide MicroRNA profiling of mantle cell lymphoma reveal a distinct subgroup with poor prognosis

    Get PDF
    MicroRNA (miRNA) deregulation has been implicated in the pathogenesis of mantle cell lymphoma (MCL). Using a high-throughput quantitative real-time PCR platform, we performed miRNA profiling on cyclin D1- positive MCL (n=30) and cyclin D1-negative MCL (n=7) and compared them with small lymphocytic leukemia/lymphoma (SLL, n=12), aggressive B-cell lymphomas (n=138), normal B-cell subsets and stromal cells. We identified a 19-miRNA classifier which included six upregulated miRNAs (miR-135a, miR-708, miR-150, miR-363, miR-184, miR-342-5p) and 13 downregulated miRNAs, that was able to distinguish MCL from other aggressive lymphomas with \u3e90% probability. Some of these upregulated miRNAs are highly expressed in naïve B-cells. MicroRNA classifier showed consistent results in FFPE tissues and was able to distinguish cyclin D1-negative MCL from other lymphomas. A 26-miRNA classifier could distinguish MCL from SLL, dominated by 23 upregulated miRNAs in MCL. Unsupervised hierarchical clustering of MCL cases demonstrated a cluster characterized by high expression of miRNAs from polycistronic miR17~92 cluster and its paralogs miR-106a-363 and miR-106b-25, which was distinct from the other clusters showing enrichment of stroma associated miRNAs. The corresponding gene-expressionprofiling (GEP) data showed that the former cluster of MCL had significantly higher proliferation genesignature (PS), while the other subsets had higher expression of stroma associated genes. Clinical outcome analysis suggests that miRNAs can serve as prognosticators

    In vivo Recombinant Adenovirus-mediated p53 Gene Therapy in a Syngeneic Rat Model for Colorectal Cancer

    Get PDF
    The p53 gene has a significant role in controlling genomic stability of cancer. The purpose of this study was to evaluate the tumor response of allograft colorectal tumor treated with Ad5CMV-p53 in a syngeneic rat model. Two weeks after the inoculation of WB-2054-M5 tumor cells in the flank of rats, rats were randomly assigned by tumor size to one of three groups (n=18 in each): phosphate buffered saline (PBS), Ad5CMV, and Ad5CMV-p53. Recombinant adenovirus or PBS was administered through intratumoral injection at three divided doses every other day for 4 weeks. Apoptosis of the tumors was evaluated using TUNEL assay. After 2 and 4 weeks of treatment, the volume (cm3) of tumors in PBS, Ad5CMV, and Ad5CMV-p53 was as follows: 2 week: 1.66±0.43, 1.40±0.47, 0.75±0.26 (p<0.001), 4 week: 4.41±0.88, 3.93±1.86, 2.33±0.51 (p<0.001). Tumor growth showed no statistically significant difference between the PBS and Ad5CMV groups (6-week vol. p=0.32). The TUNEL assay results revealed more apparent apoptotic cells in Ad5CMV-p53-treated tumors than in other groups. Growth of allograft colorectal cancer in the syngeneic rat model was significantly suppressed by intratumoral Ad5CMV-p53 gene therapy. These results demonstrate that gene replacement therapy with p53 may provide a novel modality of treatment in conjunction with other present treatments for metastatic colorectal cancer

    Genome-wide miRNAprofiling of mantle cell lymphoma reveals a distinct subgroup with poor prognosis

    Get PDF
    miRNA deregulation has been implicated in the pathogenesis of mantle cell lymphoma (MCL). Using a high-throughput quantitative real-time PCR platform, we performed miRNA profiling on cyclin D1–positive MCL (n = 30) and cyclin D1–negative MCL (n =7) and compared them with small lymphocytic leukemia/ lymphoma (n =12), aggressive B-cell lymphomas (n =138), normal B-cell subsets, and stromal cells.We identified a 19-miRNA classifier that included 6 up-regulated miRNAs and 13 down regulated miRNA that was able to distinguish MCL from other aggressive lymphomas. Some of the up-regulated miRNAs are highly expressed in naive B cells. This miRNAclassifier showed consistent results in formalinfixed paraffin-embedded tissues and was able to distinguish cyclin D1–negative MCL from other lymphomas. A 26-miRNA classifier could distinguish MCL from small lymphocytic leukemia/lymphoma, dominated by 23 up-regulated miRNAs in MCL. Unsupervised hierarchical clustering of MCL patients demonstrated a cluster characterized by high expression of miRNAs from the polycistronic miR17-92 cluster and its paralogs, miR-106a-363 and miR-106b-25, and associated with high proliferation gene signature. The other clusters showed enrichment of stroma-associated miRNAs, and also had higher expression of stroma-associated genes. Our clinical outcome analysis in the present study suggested that miRNAs can serve as prognosticators

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres
    corecore