34 research outputs found

    The anatomy of the tendon of the Infundibulum revisited

    Get PDF
    The heart is a muscular organ supported by collagenous tissue. The collagenous tissue is condensed in certain areas to form a supporting framework, often called the fibrous skeleton. The so-called tendon of the infundibulum has previously been described as part of this skeleton, but its structure and incidence remain ill defined. The tendon was initially described as a strip of fibrous tissue running between the aortic root and the pulmonary trunk. Since information on its structure is vague, we sought to evaluate its existence in 100 formalin-fixed adult human hearts obtained from subjects ranging in age from 22 to 86 years, in 20 hearts from infants and children aged from 2 months to 6 years at the time of their death and in 10 cattle hearts. We used classical macroscopic anatomical techniques to demonstrate all the possible connections between the sinuses of the aorta and the pulmonary trunk. We then supplemented the macroscopic techniques with serial transverse histological sections taken through the vascular roots, staining the sections with the haematoxylin-eosin, van Gieson, Masson trichrome and orcein staining methods. Fascial bands surrounded by connective tissue were observed in all hearts. In 80 adult hearts and in 16 neonatal hearts we found fascial bands or strips, which connected the aortic and pulmonary roots. Only in two hearts, however, were we able to identify tendon-like structures, and histology revealed that these were formed by tightly packed collagen fibres intermingled with fat, most likely due to advanced age. Thus in those cases where a "tendon" was present it was no more than condensed fascial bands joining together the apposing sinuses of the arterial trunks. In our opinion, therefore, accounts in the literature describing the "tendon of the infundibulum" as a tendinous structure connecting the aortic and pulmonary roots do not accurately represent this anatomical structure

    Atl1 Regulates Choice between Global Genome and Transcription-Coupled Repair of O6-Alkylguanines

    Get PDF
    Nucleotide excision repair (NER) has long been known to remove DNA lesions induced by chemical carcinogens, and the molecular mechanism has been partially elucidated. Here we demonstrate that in Schizosaccharomyces pombe a DNA recognition protein, alkyltransferase-like 1 (Atl1), can play a pivotal role in selecting a specific NER pathway, depending on the nature of the DNA modification. The relative ease of dissociation of Atl1 from DNA containing small O6-alkylguanines allows accurate completion of global genome repair (GGR), whereas strong Atl1 binding to bulky O6-alkylguanines blocks GGR, stalls the transcription machinery, and diverts the damage to transcription-coupled repair. Our findings redraw the initial stages of the NER process in those organisms that express an alkyltransferase-like gene and raise the question of whether or not O6-alkylguanine lesions that are poor substrates for the alkyltransferase proteins in higher eukaryotes might, by analogy, signal such lesions for repair by NER

    Membranous nephropathy caused by mercury-containing skin lightening cream.

    No full text
    A 46 year old woman developed membranous nephropathy following the use of a mercury-containing skin lightening cream. This association has not been reported in the literature for over a decade and apparently never from this country. It is important that clinicians are aware of this usually eminently treatable cause of the nephrotic syndrome as it is likely to be missed unless specifically enquired for
    corecore