1,352 research outputs found
Searching for dominant high-level features for music information retrieval
Music Information Retrieval systems are often based on the analysis of a large number of low-level audio features. When dealing with problems of musical genre description and visualization, however, it would be desirable to work with a very limited number of highly informative and discriminant macro-descriptors. In this paper we focus on a specific class of training-based descriptors, which are obtained as the loglikelihood of a Gaussian Mixture Model trained with short musical excerpts that selectively exhibit a certain semantic homogeneity. As these descriptors are critically dependent on the training sets, we approach the problem of how to automatically generate suitable training sets and optimize the associated macro-features in terms of discriminant power and informative impact. We then show the application of a set of three identified macro-features to genre visualization, tracking and classification
Ultrastructural and spectrophotometric study on the effects of putative triggers on aortic valve interstitial cells in in vitro models simulating metastatic calcification.
Metastatic calcification of cardiac valves is a common complication in patients affected by chronic renal failure. In this study, primary bovine aortic valve interstitial cells (AVICs) were subjected to pro-calcific treatments consisting in cell stimulation with (i) elevated inorganic phosphate (Pi = 3mM), in order to simulate hyperphosphatemic conditions; (ii) bacterial endotoxin lipopolysaccharide (LPS), simulating direct effects by microbial agents; and (iii) conditioned media (CM) derived from cultures of either LPS-stimulated heterogenic macrophages (commercial murine RAW264.7 cells) or LPS-stimulated fresh allogeneic monocytes/macrophages (bCM), simulating consequent inflammatory responses, alone or combined. Compared to control cultures, spectrophotometric assays revealed shared treatment-dependent higher values of both calcium amounts and alkaline phosphatase activity for cultures involving the presence of elevated Pi. Ultrastructurally, shared peculiar pro-calcific degeneration patterns were exhibited by AVICs from the same cultures irrespectively of the applied treatment. Disappearance of all cytomembranes and concurrent formation of material showing positivity to Cuprolinic Blue and co-localizing with silver precipitation were followed by the outcropping of such a material, which transformed in layers outlining the dead cells. Subsequent budding of these layers resulted in the formation of bubbling bodies and concentrically laminated calcospherulae mirroring those in actual soft tissue calcification. In conclusion, the in vitro models employed appear to be reliable tools for simulating metastatic calcification and indicate that hyperphosphatemic-like conditions could trigger valve calcification per se, with LPS and allogeneic macrophage-derived secretory products acting as possible calcific enhancers via inflammatory responses
Survival-related autophagic activity versus procalcific death in cultured aortic valve interstitial cells treated with critical normophosphatemic-like phosphate concentrations
Valve dystrophic calcification is a common disorder affecting normophosphatemic subjects. Here, cultured aortic valve interstitial cells (AVICs) were treated 3 to 28 days with phosphate (Pi) concentrations spanning the normal range in humans (0.8, 1.3, and 2.0 mM) alone or supplemented with proinflammatory stimuli to assess possible priming of dystrophic-like calcification. Compared with controls, spectrophotometric analyses revealed marked increases in calcium amounts and alkaline phosphatase activity for 2.0-mM-Pi-containing cultures, with enhancing by proinflammatory mediators. Ultrastructurally, AVICs treated with low/middle Pi concentrations showed an enormous endoplasmic reticulum (ER) enclosing organelle debris, so apparently executing a survival-related atypical macroautophagocytosis, consistently with ultracytochemical demonstration of ER-associated acid phosphatase activity and decreases in autophagosomes and immunodetectable MAP1LC3. In contrast, AVICs cultured at 2.0-mM Pi underwent mineralization due to intracellular release and peripheral layering of phospholipid-rich material acting as hydroxyapatite nucleator, as revealed by Cuprolinic Blue and von Kossa ultracytochemical reactions. Lack of immunoblotted caspase-3 cleaved form indicated apoptosis absence for all cultures. In conclusion, fates of cultured AVICs were crucially driven by Pi concentration, suggesting that serum Pi levels just below the upper limit of normophosphatemia in humans may represent a critical watershed between macroautophagy-associated cell restoring and procalcific cell death
Experimental evaluation of a localization algorithm for multiple acoustic sources in reverberating environments
Publication in the conference proceedings of EUSIPCO, Florence, Italy, 200
TLR3 engagement induces IRF-3-dependent apoptosis in androgen-sensitive prostate cancer cells and inhibits tumour growth in vivo
Toll-like receptors (TLRs) are a family of highly conserved transmembrane proteins expressed in epithelial and immune cells that recognize pathogen associated molecular patterns. Besides their role in immune response against infections, numerous studies have shown an important role of different TLRs in cancer, indicating these receptors as potential targets for cancer therapy. We previously demonstrated that the activation of TLR3 by the synthetic double-stranded RNA analogue poly I:C induces apoptosis of androgen-sensitive prostate cancer (PCa) LNCaP cells and, much less efficiently, of the more aggressive PC3 cell line. Therefore, in this study we selected LNCaP cells to investigate the mechanism of TLR3-mediated apoptosis and the in vivo efficacy of poly I:C-based therapy. We show that interferon regulatory factor-3 (IRF-3) signalling plays an essential role in TLR3-mediated apoptosis in LNCaP cells through the activation of the intrinsic and extrinsic apoptotic pathways. Interestingly, hardly any apoptosis was induced by poly I:C in normal prostate epithelial cells RWPE-1. We also demonstrate for the first time the direct anticancer effect of poly I:C as a single therapeutic agent in a well-established human androgen-sensitive PCa xenograft model, by showing that tumour growth is highly impaired in poly I:C-treated immunodeficient mice. Immunohistochemical analysis of PCa xenografts highlights the antitumour role of poly I:C in vivo both on cancer cells and, indirectly, on endothelial cells. Notably, we show the presence of TLR3 and IRF-3 in both human normal and PCa clinical samples, potentially envisaging poly I:C-based therapy for PCa
Ultrastructural characterization of calcification onset and progression in subdermally implanted aortic valves. Histochemical and spectrometric data
Detailed characterization of the subdermal model is a significant tool for better understanding of calcification mechanisms occurring in heart valves. In previous ultrastructural investigation on six-week-implantated aortic valve leaflets, modified pre-embedding glutaraldehyde-cuprolinic-blue reactions (GA-CB) enabled sample decalcification with concurrent retention/staining of lipid-containing polyanionic material, which lined cells and cell-derived matrix-vesicle-like bodies (phthalocyanin-positive layers: PPLs) co-localizing with the earliest apatite nucleation sites. Additional post-embedding silver staining (GA-CB-S) revealed PPLs to contain calcium-binding sites. This investigation concerns valve leaflets subjected to shorter implantation times to shed light on the modifications associated with PPLs generation and calcification onset/progression. Spectrometric estimations revealed time-dependent calcium increase, for unreacted samples, and copper modifications indicating an increase in acidic, non-glycanic material, for GA-CB-reacted samples. Two-day-implant thin sections showed emission and subsequent reabsorption of lamellipodium-like protrusions by cells, originating ECM-containing vacuoles, and/or degeneration stages characterized by the appearance of GA-CB-S-reactive, organule-derived dense bodies and progressive dissolution of all cell membranes. In one-week-implants, the first PPL-lined cells were found to co-exist with cells where GA-CB-S-reactive material accumulated, or exudated towards their edges, or outcropped at the ECM milieu, so acquiring PPL features. PPL-derived material was observed increasingly to affect the ECM on thin sections of one-week- to six-week-implants. These results show an endogenous source for PPLs and reveal that a peculiar cascade of cell degenerative steps is associated with valve mineralization in the subdermal model, providing new useful parameters for more reliable comparison of this experimental calcification process versus the physiological and pathological processes
Nonlinear Stochastic Partial Differential Equations of hyperbolic type driven by Lévy-type noises
- …
