7 research outputs found

    Low-intensity pulsed ultrasound of different intensities differently affects myocardial ischemia/reperfusion injury by modulating cardiac oxidative stress and inflammatory reaction

    Get PDF
    IntroductionThe prevalence of ischemic heart disease has reached pandemic levels worldwide. Early revascularization is currently the most effective therapy for ischemic heart diseases but paradoxically induces myocardial ischemia/reperfusion (MI/R) injury. Cardiac inflammatory reaction and oxidative stress are primarily involved in the pathology of MI/R injury. Low-intensity pulsed ultrasound (LIPUS) has been demonstrated to reduce cell injury by protecting against inflammatory reaction and oxidative stress in many diseases, including cardiovascular diseases, but rarely on MI/R injury.MethodsThis study was designed to clarify whether LIPUS alleviates MI/R injury by alleviating inflammatory reaction and oxidative stress. Simultaneously, we have also tried to confirm which intensity of the LIPUS might be more suitable to ameliorate the MI/R injury, as well as to clarify the signaling mechanisms. MI/R and simulated ischemia/reperfusion (SI/R) were respectively induced in Sprague Dawley rats and human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). LIPUS treatment, biochemical measurements, cell death assay, estimation of cardiac oxidative stress and inflammatory reaction, and protein detections by western blotting were performed according to the protocol.ResultsIn our study, both in vivo and in vitro, LIPUS of 0.1 W/cm2 (LIPUS0.1) and 0.5 W/cm2 (LIPUS0.5) make no significant difference in the cardiomyocytes under normoxic condition. Under the hypoxic condition, MI/R injury, inflammatory reaction, and oxidative stress were partially ameliorated by LIPUS0.5 but were significantly aggravated by LIPUS of 2.5 W/cm2 (LIPUS2.5) both in vivo and in vitro. The activation of the apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) pathway in cardiomyocytes with MI/R injury was partly rectified LIPUS0.5 both in vivo and in vitro.ConclusionOur study firstly demonstrated that LIPUS of different intensities differently affects MI/R injury by regulating cardiac inflammatory reaction and oxidative stress. Modulations on the ASK1/JNK pathway are the signaling mechanism by which LIPUS0.5 exerts cardioprotective effects. LIPUS0.5 is promising for clinical translation in protecting against MI/R injury. This will be great welfare for patients suffering from MI/R injury

    Enhancement of Angiogenesis by Ultrasound-Targeted Microbubble Destruction Combined with Nuclear Localization Signaling Peptides in Canine Myocardial Infarction

    No full text
    Objective. This study aimed to develop a gene delivery system using ultrasound-targeted microbubbles destruction (UTMD) combined with nuclear localization signal (NLS) and investigate its efficacy and safety for therapeutic angiogenesis in canine myocardial infarction (MI) model. Methods. Fifty MI dogs were randomly divided into 5 groups and transfected with Ang-1 gene plasmid: (i) group A: only injection of microbubbles and Ang-1 plasmid; (ii) group B: only UTMD mediated gene transfection; (iii) group C: UTMD combined with classical NLS mediated gene transfection; (iv) group D: UTMD combined with mutational NLS mediated transfection; and (v) group E: UTMD combined with classical NLS in the presence of a nucleus transport blocker. The mRNA and protein expression of Ang-1 gene, microvessel density (MVD) cardiac troponin I (cTnI), and cardiac function were determined after transfection. Results. The expression of mRNA and protein of Ang-1 gene in group C was significantly higher than that of the other groups (all P < 0.01). The MVD of group C was 10.2-fold of group A and 8.1-fold of group E (P < 0.01). The cardiac function in group C was significant improvement without cTnI rising. Conclusions. The gene delivery system composed of UTMD and NLS is efficient and safe

    Lot-to-lot consistency, immunogenicity, and safety of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults: A randomized, double-blind, phase IV trial

    No full text
    Previous phase I to III clinical trials have shown that the inactivated SARS-CoV-2 vaccine namely CoronaVac has good efficacy, safety, and immunogenicity. This phase IV trial aims to evaluate the lot-to-lot consistency, immunogenicity, and safety on a commercial scale in healthy adults, which could provide data to support stable manufacturing. In this single-center, randomized, double-blind study, 1,080 healthy adults aged 26-45 years were randomly assigned into three groups to receive one of three lots of vaccines. All subjects received two doses of CoronaVac with an interval of 28 days. Serum samples were collected before the first dose and 28 days after the second dose to assess the immunogenicity. Solicited local and systemic adverse events (AEs) within 7 days and unsolicited AEs within 28 days after each dose of vaccination were recorded. A total of 1,039 participants completed the study and were included in the per-protocol set (PPS). The GMTs were 75.2 (68.5,82.6), 65.0 (59.0,71.7), and 65.3 (59.4,71.8), respectively, and the seroconversion rates of neutralizing antibody were all higher than 98%. The GMT ratios of each pair of lots were 1.16 (1.01,1.32), 1.15 (1.01, 1.32), and 0.99 (0.87, 1.14), respectively, meeting the immunological equivalence criteria. The incidence rates of adverse reactions (ARs) were 19.17%, 13.89%, and 18.33%, with no statistical difference. The ARs were all in grade 1 and grade 2, with incidences of 15.46% and 2.50%. Non-vaccine-related serious adverse events (SAEs) were reported. These results showed robust lot-to-lot consistency, immunogenicity, and safety. The stable production indicated that CoronaVac is suitable for large-scale use.Trial registration number: NCT04894227 (ClinicalTrials.gov)

    Genetic resiliency associated with dominant lethal TPM1 mutation causing atrial septal defect with high heritability

    Get PDF
    Analysis of large-scale human genomic data has yielded unexplained mutations known to cause severe disease in healthy individuals. Here, we report the unexpected recovery of a rare dominant lethal mutation in TPM1, a sarcomeric actin-binding protein, in eight individuals with large atrial septal defect (ASD) in a five-generation pedigree. Mice with Tpm1 mutation exhibit early embryonic lethality with disrupted myofibril assembly and no heartbeat. However, patient-induced pluripotent-stem-cell-derived cardiomyocytes show normal beating with mild myofilament defect, indicating disease suppression. A variant in TLN2, another myofilament actin-binding protein, is identified as a candidate suppressor. Mouse CRISPR knock-in (KI) of both the TLN2 and TPM1 variants rescues heart beating, with near-term fetuses exhibiting large ASD. Thus, the role of TPM1 in ASD pathogenesis unfolds with suppression of its embryonic lethality by protective TLN2 variant. These findings provide evidence that genetic resiliency can arise with genetic suppression of a deleterious mutation
    corecore