15,224 research outputs found
Radiance and Doppler shift distributions across the network of the quiet Sun
The radiance and Doppler-shift distributions across the solar network provide
observational constraints of two-dimensional modeling of transition-region
emission and flows in coronal funnels. Two different methods, dispersion plots
and average-profile studies, were applied to investigate these distributions.
In the dispersion plots, we divided the entire scanned region into a bright and
a dark part according to an image of Fe xii; we plotted intensities and Doppler
shifts in each bin as determined according to a filtered intensity of Si ii. We
also studied the difference in height variations of the magnetic field as
extrapolated from the MDI magnetogram, in and outside network. For the
average-profile study, we selected 74 individual cases and derived the average
profiles of intensities and Doppler shifts across the network. The dispersion
plots reveal that the intensities of Si ii and C iv increase from network
boundary to network center in both parts. However, the intensity of Ne viii
shows different trends, namely increasing in the bright part and decreasing in
the dark part. In both parts, the Doppler shift of C iv increases steadily from
internetwork to network center. The average-profile study reveals that the
intensities of the three lines all decline from the network center to
internetwork region. The binned intensities of Si ii and Ne viii have a good
correlation. We also find that the large blue shift of Ne viii does not
coincide with large red shift of C iv. Our results suggest that the network
structure is still prominent at the layer where Ne viii is formed in the quiet
Sun, and that the magnetic structures expand more strongly in the dark part
than in the bright part of this quiet Sun region.Comment: 10 pages,9 figure
Upflows in the upper transition region of the quiet Sun
We investigate the physical meaning of the prominent blue shifts of Ne VIII,
which is observed to be associated with quiet-Sun network junctions (boundary
intersections), through data analyses combining force-free-field extrapolations
with EUV spectroscopic observations. For a middle-latitude region, we
reconstruct the magnetic funnel structure in a sub-region showing faint
emission in EIT-Fe 195. This funnel appears to consist of several smaller
funnels that originate from network lanes, expand with height and finally merge
into a single wide open-field region. However, the large blue shifts of Ne VIII
are generally not associated with open fields, but seem to be associated with
the legs of closed magnetic loops. Moreover, in most cases significant upflows
are found in both of the funnel-shaped loop legs. These quasi-steady upflows
are regarded as signatures of mass supply to the coronal loops rather than the
solar wind. Our observational result also reveals that in many cases the
upflows in the upper transition region (TR) and the downflows in the middle TR
are not fully cospatial. Based on these new observational results, we suggest
different TR structures in coronal holes and in the quiet Sun.Comment: 4 pages, 4 figures, will appear in the Proceedings of the Solar wind
12 conferenc
Observation of indirect ionization of W7+ in an electron-beam ion-trap plasma
In this work, visible and extreme ultraviolet spectra of W7+ are measured
using the high-temperature superconducting electron-beam ion trap (EBIT) at the
Shanghai EBIT Laboratory under extremely low-energy conditions (lower than the
nominal electron-beam energy of 130 eV). The relevant atomic structure is
calculated using the flexible atomic code package based on the relativistic
configuration interaction method. The GRASP2K code, in the framework of the
multiconfiguration Dirac-Hartree-Fock method, is employed as well for
calculating the wavelength of the M1 transition in the ground configuration of
W7+. A line from the W7+ ions is observed at a little higher electron-beam
energy than the ionization potential for W4+, making this line appear to be
from W5+. A hypothesis for the charge-state evolution of W7+ is proposed based
on our experimental and theoretical results; that is, the occurrence of W7+
ions results from indirect ionization caused by stepwise excitation between
some metastable states of lower-charge-state W ions, at the nominal
electron-beam energy of 59 eV
Pulsed THz radiation due to phonon-polariton effect in [110] ZnTe crystal
Pulsed terahertz (THz) radiation, generated through optical rectification
(OR) by exciting [110] ZnTe crystal with ultrafast optical pulses, typically
consists of only a few cycles of electromagnetic field oscillations with a
duration about a couple of picoseconds. However, it is possible, under
appropriate conditions, to generate a long damped oscillation tail (LDOT)
following the main cycles. The LDOT can last tens of picoseconds and its
Fourier transform shows a higher and narrower frequency peak than that of the
main pulse. We have demonstrated that the generation of the LDOT depends on
both the duration of the optical pulse and its central wavelength. Furthermore,
we have also performed theoretical calculations based upon the OR effect
coupled with the phonon-polariton mode of ZnTe and obtained theoretical THz
waveforms in good agreement with our experimental observation.Comment: 9 pages, 5 figure
On ion-cyclotron-resonance heating of the corona and solar wind
This paper concisely summarizes and critically reviews recent work by the authors on models of the heating of the solar corona by resonance of ions with high-frequency waves (up to the proton cyclotron frequency). The quasi-linear theory of pitch angle diffusion is presented in connection with relevant solar wind proton observations. Hybrid fluid-kinetic model equations, which include wave-particle interactions and collisions, are derived. Numerical solutions are discussed, representative of the inner corona and near-Sun solar wind. A semi-kinetic model for reduced velocity distributions is presented, yielding kinetic results for heavy ions in the solar corona. It is concluded that a self-consistent treatment of particle distributions and wave spectra is required, in order to adequately describe coronal physics and to obtain agreement with observations
Lifting of Steel Coils in Bore-Vertical Orientation
Lifting of coils with the bore in the vertical orientation could give rise to safety issues if the coil integrity is compromised during the slitting and packing operation. Coil telescoping (whereby the inner wraps of the coil spiral out) is known to occur during lifting, which could pose as a serious threat to the safety of personnel involved. In this type of incident, the coil straps are also broken when their breaking strength is exceeded and the whole coil would unwrap itself at an elevated position. Back tension is applied to the strip while shearing wide strip into narrower slits; this allows sufficient radial pressure to be built up within the bulk of the narrow coils. Upon unloading, the radial pressures at the innermost and outermost wraps decrease to zero but the bulk of the inter-wrap pressure within the coil remains largely unchanged. The interwrap frictional forces developed within the coil enable the coil to retain its integrity under its own weight. It is found that the radial pressures developed within the slit coil play the most crucial role in providing sufficient frictional resistance to support the weight of the coil wraps during lifting with the bore in the vertical orientation. In addition, the inter-wrap pressures near the footprint of the mechanical lifting device, near the bore, have the most significant influence in preventing coil telescoping
Front Stability in Mean Field Models of Diffusion Limited Growth
We present calculations of the stability of planar fronts in two mean field
models of diffusion limited growth. The steady state solution for the front can
exist for a continuous family of velocities, we show that the selected velocity
is given by marginal stability theory. We find that naive mean field theory has
no instability to transverse perturbations, while a threshold mean field theory
has such a Mullins-Sekerka instability. These results place on firm theoretical
ground the observed lack of the dendritic morphology in naive mean field theory
and its presence in threshold models. The existence of a Mullins-Sekerka
instability is related to the behavior of the mean field theories in the
zero-undercooling limit.Comment: 26 pp. revtex, 7 uuencoded ps figures. submitted to PR
- …