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Abstract. This paper concisely summarizes and critically re-
views recent work by the authors on models of the heating of
the solar corona by resonance of ions with high-frequency
waves (up to the proton cyclotron frequency). The quasi-
linear theory of pitch angle diffusion is presented in connec-
tion with relevant solar wind proton observations. Hybrid
fluid-kinetic model equations, which include wave-particle
interactions and collisions, are derived. Numerical solutions
are discussed, representative of the inner corona and near-
Sun solar wind. A semi-kinetic model for reduced velocity
distributions is presented, yielding kinetic results for heavy
ions in the solar corona. It is concluded that a self-consistent
treatment of particle distributions and wave spectra is re-
quired, in order to adequately describe coronal physics and
to obtain agreement with observations.

1 Introduction

In the recent past intensive efforts were made to explain fea-
tures of observed solar EUV (extreme ultraviolet) emission
lines of heavy ions. The lines provide, through their widths
(broadenings or equivalent ion temperatures) and shifts (ion
drift speeds), diagnostic information on the coronal plasma
state. Models and concepts were developed to explain these
observations as a result of ion heating and acceleration by
high-frequency waves in coronal funnels and holes. The the-
ories are based on multi-fluid equations and/or kinetic equa-
tions, including the resonance of ions with cyclotron waves.
This paper summarizes some of the key model results (ob-
tained in various papers by the authors) and addresses key
plasma physics issues related to the problem of wave energy
absorption and transport, as well as the evolution of the dis-
tribution functions of the particles and spectra of the waves.
The basic equations are compiled and numerical results are
compared with in situ and remote-sensing observations.
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It is shown that a key role is played in the wave-particle ki-
netics by pitch angle diffusion in the wave frame, in associa-
tion with plateau formation in the velocity distribution func-
tions. Evidence for this is found in the in situ observations
of solar wind protons (from Helios plasma measurements), as
well as in recent numerical simulations of heavy ions (such as
oxygen or iron). The physics of the wave-particle processes
is discussed in light of the existing data and the predictions
of quasi-linear theory (QLT). It should be emphasized again
at the outset of this article that we will mainly provide here a
summarising review of our own recent work.

2 Evidence for ion-cyclotron-resonance heating

Spectroscopic determination of the widths of extreme ultravi-
olet emission lines, as obtained from measurements made on
SOHO (Solar and Heliospheric Observatory), indicate that
heavy ions in various ionization stages in the corona are
very hot (see, e.g. Kohl et al., 1997; Wilhelm et al., 1998;
Cranmer et al., 1999), particularly in the polar coronal holes
where electrons are relatively cold. The ion kinetic temper-
atures seem to show some ordering with respect to the lo-
cal gyro-frequencies (Tu et al., 1998, 1999), indicating that
wave-particle processes are important.

It is well-known that the protons in the high-speed solar
wind reveal highly skewed and anisotropic velocity distribu-
tion functions (VDFs). In particular, the perpendicular pro-
ton temperature, which is larger than the parallel proton tem-
perature, has been interpreted as being caused by cyclotron
resonant heating (Marsch et al., 1982). Typically, the heavy
ions in fast wind move faster and have higher temperatures
than the protons, another signature of wave-particle interac-
tions. For reviews of these solar wind phenomena, see, e.g.
Marsch (1991) concerning the early in situ measurements
made in the ecliptic plane by Helios, and von Steiger et al.
(1995), with respect to more recent observations by Ulysses
out of the ecliptic. The minor ions can be considered as test
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particles, which probe waves and turbulence and act as trac-
ers of the wave effects.

3 Pitch angle diffusion of solar wind protons

3.1 Quasi-linear diffusion theory

To explain the detailed kinetics of ion VDFs, the Boltzmann
equation, combined with quasi-linear wave theory (see, e.g.
Stix, 1992), for wave-particle interactions should be used in
models. If the relative wave amplitudes are sufficiently small
and the spectra broad in Fourier space, which is the case in
the solar wind kinetic regime, QLT is adequate to describe
the wave-particle couplings and the evolution of the parti-
cle VDFs, as well as of the wave energy spectrum densities
(ESDs).

The quasi-linear diffusion equation describes the evolution
of the velocity distribution function,fj (v‖, v⊥, t), of any
particle speciesj , for example, in the solar inertial frame
of reference, in which the particles and waves are suppose to
propagate. Throughout, we will assume that the VDF is nor-
malized to a density of unity. The general diffusion equation
for any type of wave, propagating obliquely to the field in
a magnetized plasma, has originally been derived by Kennel
and Engelmann (1966). It is calculated in a transparent way
in the textbook of Stix (1992) and, after Marsch (2002), can
be written as
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where the pitch angle gradient in the wave frame was intro-
duced. It is given by the velocity derivative
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Note that the well-known, quasi-linear plateau in the VDF
implies a vanishing pitch angle gradient, i.e.∂/∂α = 0.

The magnetic field fluctuation spectrum,BM(k), is nor-
malized to the background-field (indicated byB0) energy
density. We define:

B̂M(k) = (
BM(k)

B0
)2(

k‖

k
)2 1
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. (3)

The symbols used are:ωM(k) is the frequency of a linear
wave modeM, k is the wave vector, andeM(k) is the wave
polarization vector (Melrose and McPhedran, 1991). The
term in the denominator comes from the replacement of the
electric field ESD by the magnetic field ESD. It turns out
to be physically meaningful to introduce the ion-wave relax-
ation or collision rate defined as
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Here we have also introduced thes-order resonance speed
and the Bessel functions (with indexs):

Vj (k, s) =
ωM(k) − s�j

k‖

, Js = Js(
k⊥v⊥

�j

) . (5)

The circular components of the wave polarization vector are

e±

M(k) = eMx(k) ± i eMy(k) . (6)

The various symbols used above are: the speed of light is
denoted byc, the ion charge byej , its charge number byZj ,
density bynj , and mass bymj . The plasma frequency of
speciesj is ω2

j = (4πe2
jnj )/mj . The ion gyro-frequency,

carrying the sign of the charge, reads�j = (ejB0)/(mj c).
The fractional mass density of speciesj is defined aŝρj =

njmj/ρ, with ρ =
∑

` n`m`. We will make use of the rela-
tion ρ̂j�

2
j = ω2

jV
2
A/c2, where the Alfv́en speed is based on

the total mass density and defined byV 2
A = B2

0/(4πρ). Thus,
the plasma frequency,ωj , can be expressed through the gyro-
frequency and the fractional mass density of each species.
Furthermore, we define the parallel,Tj‖, and perpendicular
temperatureTj⊥, and the corresponding thermal speeds by
the relations:V 2

j‖
= kBTj‖/mj , V 2

j⊥
= kBTj⊥/mj , where

kB denotes Boltzmann’s constant.

3.2 A typical fast solar wind proton distribution

Helios measurements yielded 3-dimensional proton velocity
distributions (Marsch, 1991), which provide a unique oppor-
tunity to test the idea of quasi-linear pitch angle diffusion.
We present in Fig. 1 one example of a measured VDF, rep-
resented as cuts in thev‖ − v⊥−plane and compare the data
with the prediction for plateau formation. Only the innermost
contours above the 10% level of the maximum are shown
here. The corresponding plasma parameters are given in Ta-
ble 1 of the original paper of Marsch and Tu (2001b). The
horizontal axis givesv‖, and the verticalv⊥. The left-hand
axis points in the Sun’s direction.

The wave dispersion is accounted for in a simplified way,
without using the full self-consistent dispersion relation. An
empirical instead of theoretical,Vph = ωM(k)/k‖, phase
speed is fitted to the data, thus, obtaining values equal to or
somewhat less than the measuredVA. The black dot marked
by number 1 corresponds to the fitted wave phase speed,
which was estimated to beVph = 0.8VA. The factor 0.8
is assumed to simulate the dispersion of cyclotron waves and
represents the decrease in the phase speed with increasing
wave number. We find empirically thatVph = 147 km/s.
The large dashed arc plotted on the left-hand side of the con-
tours is a segment of the circle centered in point 1. The ra-
dius is given by the particle’s speed,w, in the wave frame:

w =

√
(v‖ − Vph)2 + v2

⊥
. Note that a pitch angle in the wave

frame is given by the angle formed by the horizontal axis and
the line connecting the full black dot with any point on the
arc.

We see in Fig. 1 that the outer two arcs almost coin-
cide with the two contours corresponding to fractions of
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Fig. 1. Comparison of measured proton velocity distributions with
the theoretical resonance plateaus, as predicted by QLT. The hor-
izontal axis givesv‖ and the verticalv⊥. The four contours cor-
respond to fractions of 0.8, 0.6, 0.4, 0.2 of the maximum of the
VDF. The thick dotted lines on the left-hand sides are the circular
arcs delineating the plateau, whereby the respective centers of the
circles are marked on thev‖ axis by dots (with the same numbers at-
tached to the contours). The dots indicate the locations ofVph. The
coalignment of the measured contours with the circles of constant
particle energy is striking (Marsch and Tu, 2001b).

0.2 and 0.4 of the maximum phase space density, respec-
tively. Over a wide range of about 70◦ in pitch angle,
the particles, with the tips of their velocity vectors located
on the contour, have the same kinetic energy in the wave
frame. This is just the cyclotron-resonance plateau as pre-
dicted by QLT. To meet the contour at 0.6 of the maximum
of the VDF, we need to shift slightly the center of the cir-
cle to the point numbered 2, corresponding to a velocity of
0.73VA = 135 km/s. This arc coincides again with the mea-
sured contour, within an interval about 45◦ wide in pitch an-
gle in the wave frame. Particles with speeds corresponding
to this contour have a smallerv‖ and thus, are resonant with a
higher wave number. The resonant condition can be written
as:ω(k‖) − k‖v‖ − �p = 0. Sinceω(k‖) is less than the cy-
clotron frequency,�p, and sincek‖ is positive, the outward
propagating waves can only resonate with particles having a
negativev‖. Particles with greater negativev‖ will be reso-
nant with waves at largerk‖ or shorter wavelength. For the
innermost isodensity contour at 0.8 of the maximum, there
is only a 15◦ wide range of pitch angles where the measured
contour coincides with the arc of constantw.

These observations confirm the validity of the basic con-
cepts of QLT, and suggest a further application of QLT to
understand the acceleration and heating of ions in the corona
and wind. The results also stimulated new ideas and gave

further motivation to study the interaction between the ions
and Alfvén or oblique ion-cyclotron waves in coronal holes.
Generally, plasma waves are dispersive, and there is no pre-
ferred reference frame, since the phase speedVph varies with
the wave vector. However, if the waves are weakly disper-
sive, of a broad band nature and strong enough in intensity,
the net result of simultaneous diffusion in closely neighbour-
ing wave frames will be the formation of circle-type contours
in velocity space, corresponding to roughly-constant energy
surfaces, on which the pitch angle gradient very nearly van-
ishs. QLT has also recently been applied by Isenberg et al.
(2001) and Galinsky and Shevchenko (2000) to model solar
wind VDFs by invoking the existence of a plateau.

4 Wave heating and acceleration rates

The heating and acceleration rates are obtained by a direct
integration over velocity space, as moments of the quasi-
linear diffusion Eq. (1). By evaluating the delta-function res-
onances explicitly, the corresponding rates may be cast (after
Marsch and Tu, 2001a) in the compact form:
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Equation (7) expresses the rates in terms of an integral
over the normalized magnetic ESD and sums over the mode
number,M, and resonance-order number,s, and the func-
tionRj (k, s), which also depends on the wave vectork and,
of course, on the VDF, and is obtained from the following
definition:
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This corresponds to an averaged relaxation rate weighted by
the pitch angle gradient at the resonance. As in parallel prop-
agation,Rj for oblique wave propagation can be entirely ex-
pressed in terms of the reduced VDFs (see Marsch, 2002),
if in the rateνj , the dependence onv⊥ is smoothed out by
replacing this variable by its typical thermal valueVj⊥. Note
that the quantityRj plays the role of a “wave opacity”, us-
ing a term from radiative transfer theory. At a given wave
vector, the wave absorption vanishes where the pitch angle
plateau is formed. Explicit expressions forRj , for example,
for a bi-Maxwellian, are given in the paper of Marsch and Tu
(2001a). Of course, the rates in Eq. (7) can only be evalu-
ated once the VDF,fj (v‖, v⊥), of all particle species and the
ESD, B̂M(k‖, k⊥), of all wave modes involved are known.
This complexity is an unavoidable feature of kinetic theory
as compared with fluid theory.
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5 Models for coronal ions

5.1 Hybrid fluid-kinetic model equations

In what follows we consider multi-ion fluid models. Marsch
et al. (1982) and Tu and Marsch (2001a) have given detailed
descriptions of the multi-fluid equations, which are supple-
mented by the wave heating and acceleration terms in Eq. (7),
describing the wave-particle interactions at the cyclotron res-
onance. The continuity equation for any speciesj is:

njUjA = Cj , (9)

whereCj indicates the conserved particle (number) flux of
the ion speciesj . The symbolA(r) is the cross sectional
area of the magnetic flux tube. For simplicity, we only quote
equations for a one-dimensional model in space where the
dependence is on the spatial coordinater, i.e. radial distance
from the Sun, or height in the atmosphere. The momentum
equation including anisotropic ion pressure can be written:
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where we have introduced the escape velocity from the Sun:
V∞ = 615 km/s. The acceleration,aw

j , relates to a wave
force associated with low-frequency MHD-type waves, such
as Alfvén waves which, as is well-known, exert a force
through their wave-pressure gradient. The wave acceleration
(see, e.g. McKenzie, 1994) for our one-dimensional model
can be written as follows:
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whereU =
∑

j ρ̂jUj is the plasma’s center-of-mass ve-
locity. The electrons enter the momentum equation (with-
out collisions) only through the electric field produced by
their pressure gradient. Since quasi-neutrality requiresne =∑

i Zini , where the sum extends over all ions, one only needs
to know the electron temperature profile. In most kinetic ion
models,Te(r) is assumed to be given or simply calculated
from electron heat conduction. For the actual model profiles,
see the subsequent detailed discussions. The internal energy
equations, or here, the rate-of-change equations for the ion
thermal speeds, then take the form:
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where the wave-particle interaction terms appear as sources
(heating by wave absorption) or sinks (cooling by wave emis-
sion) on the right-hand sides. Without these terms, the
double-adiabatic equations result. Equations (9), (10), (12),

and (13), sometimes complemented by Coulomb collision
terms, or similar equations, have been integrated numerically
in various models (Marsch et al., 1982; Isenberg and Holl-
weg , 1983; Marsch, 1999; Cranmer et al., 1999; Li et al.,
1999; Hu et al., 2000; Tu and Marsch, 2001a; Cranmer, 2000,
2001).

5.2 Hybrid model for solar wind ions

This section presents some of the numerical results (Marsch,
1999) which have been obtained by integrating the hybrid
model equations for spherical geometry of the outer corona
and solar wind, following the early work by Marsch et al.
(1982). We show numerical solutions, obtained by plac-
ing boundary conditions at 20 R�, for the different moments
of O6+ and protons. The VDFs are characterized as drift-
ing bi-Maxwellians in the ion reference frames. Here we
did not attempt to integrate through the region of the sonic
critical point, but simply started in the near-Sun solar wind.
Spectra of broad band LHP and RHP parallel waves were
injected at 20 R�. The abundancenO/np was taken as
0.001. The two-ion plasma was initially assumed to be in
thermal equilibrium, withUj = 0, Tj‖ = Tj⊥ = Tp‖ at
z = 20, wherez = R/R� denotes the normalized heliocen-
tric distance. The injected wave spectra isB±

ω , with power
laws in frequency for both degrees of polarization, and with
B±

ω = B±

�p(ω/�p)−α and a spectral indexα = 1.5. In the
models, the spectral index used may vary betweenα = 1 and
α = 2, or frequently, the Kolmogorov value,α = 5/3, has
been used. For the solar wind observations, see the review
by Tu and Marsch (1995) for a comprehensive discussion of
the observed spectral slopes.

Figure 2 shows ion thermal speeds and the relative speed
of O6+ ions, 1UO = UO − Up, in units of VA (Mach
numbers) versus distance from the Sun. The proton relative
speed,1Up, is not shown here because it is negligibly small
due to the very low heavy ion abundance, which means that
the protons determine the center-of-mass speed,U . Note
that the initial phase is characterized by strong cooling of
protons parallel and heating of oxygen ions perpendicular
to the magnetic field, accompanied by a marked preferen-
tial acceleration of O6+. After a few hundred wavelengths,
λA = VA/�p, the proton-wave interaction saturates at an
anisotropy of aboutTp⊥/Tp‖ ' 1.4, in accord with obser-
vations in fast wind at 0.3 AU (Marsch, 1991). The oxygen
ions also show the typical signature of cyclotron heating with
TO⊥/TO‖ ' 2.0. From aboutz = 21 onward, the LHP wave
particle interaction becomes weaker than it was initially, and
the changes become slower.

Inspection of Fig. 2 shows that betweenz = 23 and
z = 24, a new situation appears. The O6+ ions now move
increasingly into resonance with the, as yet, undamped RHP
waves. This resonant interaction leads to a strong accelera-
tion, pronounced perpendicular cooling and parallel heating.
Finally, the anisotropy is even reversed withTO⊥/TO‖ ' 0.9,
and the O6+ ions are trapped at about the Alfvén speed,
which represents a limiting value for1UO. In contrast, the
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Fig. 2. Hydrogen and oxygen ion thermal speeds squared and oxy-
gen relative speed1UO normalized to the local Alfv́en speed (vir-
tually equal toMO − Mp) are shown versus heliocentric distance
in units of solar radii. The initial values,1UO = 1Up = 0 and
TO = Tp, correspond to thermal equilibrium. Note the strong pro-
ton cooling parallel to the magnetic field (lower broken curve delin-
eates (Vp‖/VA)2). Oxygen ions are accelerated by RHP waves up
to about1UO ' VA (dotted line). Their temperatures (continuous
lines) finally (z = 24− 25) show the typical signature of fast-mode
wave heating with the anisotropy:TO‖ > TO⊥ (Marsch, 1999).

protons are not significantly affected by the fast waves, but
still maintain the signature of the initial perpendicular heat-
ing. Qualitatively, these results resemble previous calcula-
tions for He2+ (Marsch et al., 1982).

Apparently, O6+ is preferentially heated with respect to
the protons. The initial values,V 2

p‖
= V 2

p⊥
= 0.4V 2

A and

V 2
O‖

= V 2
O⊥

= 0.025V 2
A, correspond to equal temperatures

at z = 20. After the wave-particle interaction has saturated,
the parallel thermal speeds are about equal atz = 23.5, in
good agreement with the observations at 1 AU (von Steiger
et al., 1995). Unfortunately, no in situ observations exist con-
cerning the temperature anisotropy of heavy ions.

The inhomogeneity of the expanding wind (note thatVA

and�p decrease with increasing solar distance) has the ef-
fect that the fastest heavy ions in the tails of the distribution
move into increasingly stronger resonance with RHP mag-
netosonic waves. These waves further accelerate the oxygen
ions until their differential speed is aboutVA. However, as
will be shown in the kinetic model below, there is a problem.
The assumed rigidity of the VDF may lead to a gross overes-
timation of the wave effects, because the resonance function,
Rj (k, s), depends sensitively on the shape of the VDF and
should be calculated directly.

In conclusion, some basic qualitative features of the wave-
particle interactions are captured by this hybrid model, yet

the details may be quantitatively incorrect. What is revealed,
however, is that self-consistency is also crucial in describ-
ing the radial evolution of the wave ESD, because the wave
damping or excitation leads to a reshaping of the original
injected wave spectrum or even a complete erosion of the
wave power. Such processes must be included in any realis-
tic model.

5.3 Hybrid fluid-kinetic model for coronal ions

It has been suggested (Axford and McKenzie, 1997) that
magnetic reconnections occurring in the chromospheric net-
work at small-scales may create high-frequency Alfvén
waves, and that these waves represent the main energy source
for the heating of the solar corona. Following this idea,
Tu and Marsch (1997) assumed a wave spectrum in the fre-
quency range from 10−4 to 200 Hz at the coronal base. The
part of the energy spectrum that is swept by the proton fre-
quency while the wind expands is assumed to be the ion
thermal energy source in a two-fluid solar wind model. To
produce high-speed wind, the spectrum needs be as high
as 106 nT2 Hz−1 at about 200 Hz (see their model 1). No
physical mechanism or observation has yet been presented in
support of this assumption. However, the model results are
found to be consistent with the proton velocity and the ef-
fective temperature observed by UVCS/SOHO (Kohl et al.,
1998). Given that these waves exist, they should be ab-
sorbed preferentially by the minor heavy ions with low gyro-
frequencies, and thus, it is unclear whether there is actually
enough wave energy left over in the extended corona for
the heating and acceleration of the major solar wind ions,
protons and alpha particles, after the multiple absorption by
many heavy ions (Cranmer, 2000). Here some selected re-
sults of a hybrid kinetic-fluid model (Tu and Marsch, 2001a,
2001b) for the heavy ions are discussed in the context of re-
cent SOHO observations.

The hybrid multi-fluid model includes the self-consistent
treatment of the damping of the waves, as well as the asso-
ciated acceleration and heating of the ions. Tu and Marsch
(2001b) showed that if the wave power density is sufficiently
large, say about 1000 nT2Hz−1 at 160 Hz and 2.5 R�, then
the wave absorption by a prominent minor ion, such as O+5,
is small, and most of the wave energy is left for absorption
by protons. This is due to the fact that the minor ions are
quickly (within several gyro-periods) accelerated and then
partially “surf” on the waves. However, if the wave power is
too low, say lower than 10 nT2Hz−1 at 160 Hz and 2.5 R�,
then damping of the wave power by the O+5 ions is severe,
and little wave energy is finally left over for the protons.

Tu and Marsch (2001a) presented several models aimed at
explaining the high thermal anisotropy of O+5 ions observed
by Kohl et al. (1997). In those models calculations (Tu and
Marsch, 2001a), making the assumption of a rigid spectral
slope in the dissipation regime, in which case particles can
always find waves with suitable resonance frequencies, even
an extremely low wave amplitude is sufficient to generate
enormous ion heating and acceleration. However, no mech-
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Fig. 3. Comparison of the numerical results UVCS observations. (left) Model results for the radial variations of the outflow velocities of
O+5 ions (solid curve) and protons (dash-dotted curve). The observations are indicated by the upper shaded area for O+5 ions and lower for
H0 atoms; (middle) The thermal velocities for O+5 ions, including the model results for the effective perpendicular velocity (solid curve),
perpendicular thermal speed (dashed curve), and parallel thermal speed (dash-dotted curve). The observed perpendicular effective velocity
is shown by the upper shaded area (Cranmer et al., 1999), and the observed parallel thermal speed is shown by the lower shaded area. (right)
The model results for the protons: effective perpendicular velocity (solid curve), perpendicular thermal speed (dashed curve), and parallel
thermal speed (dash-dotted curve). The observed perpendicular effective thermal velocity for the H0 atoms is indicated by the shaded area.
The parallel thermal velocity of H0, assuming that the parallel temperature equals the observed electron temperature, is plotted as a thin
dash-dotted curve (Tu and Marsch, 2001a).

anism is known that would guarantee an invariant slope. If
the spectrum is allowed to evolve self-consistently, including
wave absorption, then a high temperature anisotropy cannot
be maintained. The average ion anisotropy at marginal sta-
bility in the corona then ranges only between 1 and 2.

Here it is shown how the O+5 ions can become acceler-
ated and heated, while the protons can at the same time ab-
sorb a considerable amount of wave energy, if the spectrum
is allowed to evolve self-consistently with resonant wave ab-
sorption. To achieve this result, a LHP ion-cyclotron wave
magnetic ESD of 300 nT2 Hz−1 at 100 Hz and a solar dis-
tance of 2.5 R� is required. For simplicity, we take isotropic
protons. The oxygen ions are represented by a drifting bi-
Maxwellian. The proton number density,np, at r = 2.5 R�

is 1.12 105cm−3, which gives an Alfv́en velocity atr =

2.5 R� of VA = 2000 km/s. The numerical solution shows
that VA decreases to 1500 km/s and thatnp decreases to
3 104 cm−3 at r = 3.5 R�. The proton cyclotron frequency,
fp, decreases from 460 to 180 Hz. The wave boundary con-
ditions atr = 2.5 R� are as follows: The spectral slope is
assumed to beα = 2 (which gives comparatively low power
at high frequencies); the ratio between the power density at
the oxygen resonance frequency and the background mag-
netic energy density is thenfO+5P (fO+5)/B2

= 2 10−5.
The low-frequency wave amplitude (in the MHD regime) is
(< δB > /B)2

= 3.6 10−3. To make the model description

resemble the real situation in the corona, the effects of the
alpha particles on the dispersion relations are included.

The radial evolution of the fluid parameters is shown in
Fig. 3. The numerical results are found to be largely con-
sistent with the UVCS observations, except forVO‖, which
rapidly increases from 50 to 130 km/s at 2.6 R�, and then in-
creases more slowly to 320 km/s atr = 3.5 R�. At r = 2.6
we also see distinct jumps in the curves of bothVO⊥ and
VO‖, indicating that the O+5 ions absorb “negatively” (dash-
dotted curve) nearr = 2.5 R�, which is to say that they
emit wave energy there. These jumps are the result of an
instability driven by the huge initial temperature anisotropy,
with a ratio of 80, which was assumed at the lower bound-
ary in compliance with the UVCS observations of oxygen.
The anisotropy jumps at 2.6 R� from 80 to 4 and then slowly
decreases further to the moderate value of 1.2. Such a be-
haviour of the anisotropy is consistent with earlier calcula-
tions made for interplanetary solar wind ions by Marsch et
al. (1982) and the results are shown in Fig. 2. According to
the UVCS measurements (Kohl et al., 1997), the observed
upper limit for VO‖ at 3.0 R� is 60 km/s, whileVO⊥,eff is
about 300 km/s. The effective thermal speed is defined as

VO⊥,eff =

√
2V 2

O⊥
+ (< δV >)2. As a result, the observed

anisotropy is about 25, which cannot be explained by the hy-
brid fluid-kinetic model calculations.



E. Marsch et al.: Cyclotron heating of corona 107

In summary, the hybrid-model results do not permit one
to draw convincing conclusions. The observations are not
explained satisfactorily. The essential weak point of this
model (as indeed, of all the other models with similar ingre-
dients) is the assumption of bi-Maxwellian VDFs for pro-
tons and various minor ions. However, the in situ obser-
vations (Marsch, 1991) give skewed, two-component pro-
tons with large core temperature anisotropy (see Fig. 1), but
with a Maxwellian distribution inv⊥ (Marsch and Goldstein,
1983). From the EUV observations made by SOHO (Tu et
al., 1998), one usually observes line shapes that are primar-
ily Gaussian, and thus, one may infer the coronal heavy ion
VDFs to be Maxwellians. In the subsequent section, new at-
tempts to overcome the shortcomings of the hybrid model are
described.

5.4 Semi-kinetic Boltzmann model

The starting point for a kinetic model is the well-known
Boltzmann equation for the distribution function,f (v, x, t),
which depends on time,t , velocity,v, and position vector,x.
Including wave-particle interactions and Coulomb collisions,
the Boltzmann equation attains the form:

∂f

∂t
+ v ·

∂f

∂x
+

(
g +

q

m
(E + v × B)

)
·
∂f

∂v

=

(
δf

δt

)
w.−p.

+

(
δf

δt

)
Coul.

, (14)

whereB is the magnetic,E is the electric, andg is the gravita-
tional field. In a multi-component plasma, such a Boltzmann
equation has to be used for each particle species considered.
Since these equations depend on three spatial and three ve-
locity coordinates, the numerical effort in solving them is
considerable and, therefore, simplifications are often made.
In the solar corona, all characteristic time scales are small
compared to the ion gyro-periods. Thus, it is reasonable to
assume gyrotropy. This reduces the number of velocity co-
ordinates from three to two:v −→ (v‖, v⊥). Furthermore, it
has been shown by Marsch (1998) and Vocks (2001a) that it
is meaningful to reduce the VDFs even further by integration
overv⊥. This procedure yields (after Dum et al., 1980) two
relevant reduced velocity distributions which are defined as
follows:

Fj‖(v‖) = 2π

∫
∞

0
dv⊥v⊥fj (v⊥, v‖) , (15)

Fj⊥(v‖) = 2π

∫
∞

0
dv⊥v⊥

v2
⊥

2
fj (v⊥, v‖) . (16)

The evolution equations for these reduced VDFs are ob-
tained by taking the corresponding moments of the Boltz-
mann equation. The wave-particle operator is derived from
the basic Eq. (1) and gives a diffusion term:

δ

δt
Fj‖(v‖) =

∂

∂v‖

Dj (v‖)
∂

∂v‖

Fj⊥(v‖)

−
∂

∂v‖

(
Aj (v‖)Fj‖(v‖)

)
. (17)

The transport coefficients,Dj (v‖), Aj (v‖), and Hj (v‖)

are given in the papers of Marsch (1998), Marsch and Tu
(2001a). Their evaluation involves integrations over the wave
ESD and the resonant relaxation rate,νj , which, for oblique
wave propagation, may be approximated by taking it at the
typical speed,v⊥ = Vj⊥, as suggested by Marsch (2002).
Only then can one meaningfully use the reduced VDFs. We
refer to the cited works for the mathematics involved and the
algebraic details.

To break the chain of higher-order moments appearing in
the original diffusion equation, we make the Gaussian ap-
proximation (Marsch, 1998)

2π

∫
∞

0
dv⊥v⊥

v4
⊥

4
fj (v⊥, v‖) ≈ 2V 2

j⊥
Fj⊥(v‖) , (18)

which would be exact for a bi-Maxwellian. Of course, this
does not imply thatFj⊥ is Gaussian itself. Empirical moti-
vation for the factorization of Eq. (18) stems from the solar
wind in situ observation, yielding that at any parallel speed
the protons’ perpendicular speeds are distributed as Gaussian
(Marsch and Goldstein, 1983), despite the fact that the VDFs
can be skewed, and that there may be proton beams (Marsch,
1991) drifting along the mean field. Thus, the second diffu-
sion equation reads:

δ

δt
Fj⊥(v‖) = 2 V 2

j⊥

∂

∂v‖

Dj (v‖)
∂

∂v‖

Fj⊥(v‖)

−3 Aj (v‖)
∂

∂v‖

Fj⊥(v‖)

−2 Fj⊥(v‖)
∂

∂v‖

Aj (v‖) + Hj (v‖)Fj‖(v‖) . (19)

The price to be payed for closure is that the evolution equa-
tion for Fj⊥ is now an integro-differential equation, since
the squared perpendicular thermal speed is defined by the
first parallel moment ofFj⊥. In a multi-component plasma,
the dependence onUj is also essential, since it cannot be
removed by going into the plasma (center-of-mass) frame.
Stationary solutions of Eqs. (17) and (19) are obtained if the
Gaussian condition,

Fj⊥(v‖) = V 2
j⊥

Fj‖(v‖) , (20)

is strictly fulfilled. Using the reduced VDFs, one can con-
struct a gyrotropic, 2-D model VDF by introducing the ef-
fective perpendicular thermal speed defined by:

W2
j⊥

(v‖) =
Fj⊥(v‖)

Fj‖(v‖)
, (21)

which leads in consistency with the Gaussian approximation
to the model VDF

fj (v‖, v⊥) =
Fj‖(v‖)

2πW2
j⊥

(v‖)
exp(−

w2
⊥

2W2
j⊥

(v‖)
) . (22)

In the subsequent section, we show an example of this model
distribution constructed from the numerical solutions of the
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kinetic equations. Finally, we quote the reduced Boltzmann
equations (Vocks and Marsch, 2001a), which attain the form:

∂F‖

∂t
+ v‖

∂F‖

∂r
+

( q

m
E‖ − g(r)

) ∂F‖

∂v‖

+
1

2A

∂A(r)

∂r

×2

(
∂F⊥

∂v‖

+ v‖F‖

)
=

δF‖

δt
+

(
δF‖

δt

)
Coul.

, (23)

∂F⊥

∂t
+ v‖

∂F⊥

∂r
+

( q

m
E‖ − g(r)

) ∂F⊥

∂v‖

+
1

2A

∂A(r)

∂r

×4

(
v2
j⊥

∂F⊥

∂v‖

+ v‖F⊥

)
=

δF⊥

δt
+

(
δF⊥

δt

)
Coul.

. (24)

As before, the symbolA(r) denotes the cross sectional area
of the magnetic flux tube. The Coulomb collision terms are
not quoted here explicitly. To calculate them for the reduced
distribution functions is a tedious task, algebraically as well
as numerically. This procedure is described in detail in Vocks
(2001a, 2002b). The wave terms have already been given
before in Eqs. (17) and (19).

5.5 Wave spectral transfer

The diffusion Eqs. (23) and (24) form a closed set. However,
to describe the wave-particle interactions self-consistently, it
is necessary to calculate the evolution of the wave ESD. This
requires a transport or spectral transfer equation, the deriva-
tion of which is a subtle task, in particular for a medium such
as the supersonic solar wind, in which the Doppler shifts
induced by the flow produce important effects. They have
been discussed in detail by Tu and Marsch (2001a). A robust
theory for wave spectral transfer does not exist for the solar
corona, although the problem has been dealt with generally
in the book by Melrose and McPhedran (1991), using univer-
sal concepts of wave propagation in nonuniform dispersive
media.

In particluar, the replenishment of the absorbed wave
power by a turbulent cascade in the kinetic regime is not un-
derstood. For an accurate description of the energy cascade,
the effects of anisotropy of the fluctuation spectrum, as ex-
pected in the low-beta corona and of oblique wave propaga-
tion in a turbulent subsonic flow, should also be considered.
Nonlocal wave interactions in wave number space, such as
wave nonlinear decay and modulation, or instabilities asso-
ciated with kinetic Alfv́en waves, may also play a major role
in the turbulent energy transfer. For a recent discussion, see
the work of Leamon et al. (1998, 2000) and Voitenko et al.
(2001). These important issues cannot be addressed in this
paper. A possible transport equation for the wave spectral en-
ergy has been given, for example, by Tu and Marsch (1997)
and Vocks and Marsch (2001a). This equation is formulated
here for the magnetic ESD,B(ω), in terms of the wave fre-
quency,ω, as a variable instead of the wave vector,k. It can,
for instance in the case of Alfvén waves, be written (we omit
the wave mode index) as follows:

∂B
∂t

+
1

A

∂

∂r
(A(VA + U)B) +

B
2A

∂AU

∂r
=

δB
δt

, (25)

whereU =
∑

j ρ̂jUj is the plasma’s center-of-mass veloc-
ity. The symbolA(r) is the cross sectional area of the mag-
netic flux tube. The right-hand side represents the wave ab-
sorption by the particles, which is obtained by summation of
the contributions of all species from Eq. (7), and states total
energy conservation, implying that:

−

∫
dω

δB(ω)

δt
=

∑
j

ρj

2

∫
dv‖

[
v2
‖

δFj‖

δt
+ 2

δFj⊥

δt

]
. (26)

The loss due to wave-particle interactions of total wave en-
ergy equals the gain of the summed ion kinetic energy. In this
equation, no spectral transport of wave energy, for example,
by a turbulent cascade, is considered. Such a term can be
added on the right-hand side.

5.6 Semi-kinetic model results for coronal ions

In a series of papers (Vocks, 2001a, 2002b), (Vocks and
Marsch, 2001a, 2002b), semi-kinetic (reduced Boltzmann
equation) models have been constructed to describe the sub-
tle kinetic effects of wave-particle interactions in coronal
funnels and holes. Some of the relevant equations have been
quoted in the previous section. In the simulation results
obtained by solving the equations numerically, it is found
that heavy ions are heated preferentially and that consider-
able temperature anisotropies form, the results of which are
in accord with SOHO observations. The reduced VDFs of
the heavy ions deviate strongly from a Maxwellian, an ef-
fect which increases with height due to the decrease in the
density, and thus, a decline in the efficiency of Coulomb col-
lisions.

The model plasma discussed here consists of protons,
He2+ and O5+, considered as a typical minor ion represen-
tating the cumulative effect of all heavy ions. At the lower
boundary, the densities,NHe = 0.1Np andNO = 0.001Np,
are given. Ionization dynamics is not accounted for in the
model. The computational domain extends from the tran-
sition region over 0.6 R� into the lower corona. The re-
sults show that in the transition region, the temperatures of
protons and He2+ rapidly increase to coronal values, but
then stay fairly constant. Their temperatures do not develop
anisotropy, but the oxygen ions show a different behaviour.
The profile ofTO‖ is very similar to the temperatures of the
lighter ions, butTO⊥ is strongly enhanced. It has a local
maximum near the lower bound, and it rises continuously to
very high values of the order of 107 K in the corona. Thus,
a strong anisotropy withTO⊥ > TO‖ is formed. This pre-
ferred heating of the heavy ions and concurrent formation of
a temperature anisotropy is consistent with the SOHO obser-
vations (Kohl et al., 1997).

The advantage of the semi-kinetic model is that it enables a
more detailed investigation in terms of the underlying VDFs
than is possible in fluid or hybrid models (Cranmer, 2000).
For this purpose,F‖(v‖) andF⊥(v‖) of the three ion species
are plotted at a height ofr = 1.44 R� in Fig. 4. For protons
and He2+ ions, hardly any deviations from a Maxwellian can
be seen. For the O5+ ions, F‖ is also Maxwellian, butF⊥
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Fig. 4. Reduced VDFs,F‖ (upper panel) andF⊥ (middle panel), of protons (upper lines), He2+ (middle lines) and O5+ (bottom lines) at
1.44 R�. Also shown are the equivalent Maxwellian VDFs (dotted lines). The lower panel displays the generalized temperature anisotropy
of O5+ (Vocks and Marsch, 2001a).

deviates distinctly from a Maxwellian. It is enhanced overF‖

for all speeds, with the enhancement being largest at negative
speeds in the strong cyclotron-resonance regime.

From the definition of Eq. (21), it follows that the ra-
tio of the two reduced VDFs can be interpreted as a local
temperature anisotropy. Therefore, a “generalized tempera-
ture anisotropy” function,A(v‖), may be meaningfully de-
fined as:

A(v‖) =
T⊥

T‖

(v‖) =
W2

j⊥
(v‖)

V 2
j‖

. (27)

For a bi-Maxwellian,A(v‖) is speed independent and iden-
tical with the overall constant temperature anisotropy. The
anisotropy is plotted in the third panel of Fig. 4. Where the
strongest enhancement ofF⊥ for negative speeds occurs, the
anisotropy has its highest values, ranging from about 8 to 10,
and the perpendicular heating and anisotropy become clearly
apparent in the reduced VDFs. Apparently, O5+ ions with
v‖ < 0 experience the strongest heating. This is a purely ki-
netic result that cannot be obtained from any fluid model or
hybrid model that imposes rigid assumptions on the shape of
the VDF.

In the corresponding wave spectrum atr = 1.44 R�,
which is given in Vocks and Marsch (2002b), deep absorp-
tion edges occur at and below the ion gyro-frequencies of the
species involved. As the cross section area of the magnetic

flux tube under consideration increases with height, the mag-
netic field strength decreases, and so do the gyro-frequencies.
For example, the local proton gyro-frequency atr = 1.44 R�

has a value equivalent to 0.02�p at the lower bound of the
computational domain. Therefore, the frequency of a wave
that enters the simulation box at the lower bound will, during
upward propagation, increase relative to the local ion gyro-
frequency. At a certain height, the wave will come into res-
onance first with the ions having the lowest local resonance
frequency. This is the essence of the “frequency sweeping”
mechanism discussed by Tu and Marsch (1997). At a cer-
tain height, all waves with frequencies above the lowest ion
gyro-frequency will have suffered some damping.

Recall that the reduced gyrotropic VDFs,F‖,⊥,, were in-
troduced to simplify the complexity of the kinetic model.
But there is a loss of physical information about the origi-
nalf (v), namely on its velocity component perpendicular to
the field. However, in Eq. (22) we defined a 2-dimensional
gyrotropic VDF, which depends onv‖ in a non-trivial way,
reflecting the heating process and the gyro-kinetics of the
ions in the magnetic field geometry. Assuming a Maxwellian
in v⊥, with a spread given byWj⊥ of Eq. (21), is consistent
with the Gaussian approximation made. A 2-dimensional gy-
rotropic VDF,f (v‖, v⊥), can thus be constructed. It is shown
in Fig. 5 for O5+ at r = 1.44 R�. The anisotropy can be rec-
ognized by the elliptic deformation of the contours.
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Fig. 5. Two-dimensional gyrotropic model VDF of O5+ ions at
1.44 R�, displaying a distinct kinetic temperature anisotropy and
skewness (heat flux) away from the Sun (Vocks and Marsch, 2002b).

Furthermore, the preferred pitch angle scattering of oxy-
gen ions at negative speeds leads to a skewness of the VDF,
which declines in velocity space much faster on the sunward
than anti-sunward side. This skewness of the model VDF
is a salient feature. A similar skewness has commonly been
observed in solar wind proton VDFs (Marsch, 1991). The re-
sult again demonstrates the necessity of the kinetic approach
to model coronal plasma processes. While the resonant wave
heating continues, the contours tend to attain shapes corre-
sponding to the plateaus discussed previously. This result
illustrates the main differences with respect to the hybrid
models, in which the ions are continuously heated (or cooled
by an instability leading to wave emission) when maintain-
ing a rigid bi-Maxwell VDF. In the semi-kinetic model, it
was found that the wave heating mechanism prefers the ions
with the lowest local resonance frequencies, i.e. O5+ ions
with negativev‖. However, once a plateau is reached, the
growth/damping rate can vanish over a large region of veloc-
ity space. This is illustrated in Fig. 6, whereγ is displayed
as a function of the resonance speed of the O5+ ions. The
wave growth rate,γ , can be derived by using the full dis-
persion relation for waves propagating parallel to the back-
ground magnetic field. In Marsch (1998), the dispersion re-
lation for parallel LHP waves is given. The growth rate, for a
multi-component plasma, may be written in a form involving
only the reduced VDFs:

γ

ω
=

π

2

∑
j

ρ̂j

(
�j

ω

)2 (
−

�j

k‖

F‖ +
∂F⊥

∂v‖

)∣∣∣∣
v‖=

ω−�j
k‖

. (28)

Apparently,γ depends primarily on the number of reso-
nant ions that are able to absorb the waves. Therefore, plot-
ting it normalized to a characteristic frequency, such as�p,

Fig. 6. Normalized growth rate, per resonant particle of O5+, eval-
uated from model results obtained at 2.46 R�. The plot displays
a distinct flatness of the curve over a wide range of speeds corre-
sponding to a quasi-linear plateau in the VDF (Vocks, 2001a).

does not provide sufficient physical insight into the stability
mechanism of the VDF. Especially for largev‖, this problem
becomes apparent, since at those speeds there are simply no
ions that the waves could resonate with. To clarify this is-
sue,γ is not only normalized to�p, but also to the number
of resonant ions given byF‖(v‖). This function is plotted in
Fig. 6 with a startling result. Over a wide range of negative
speeds,γ is close to zero, meaning that the reduced VDFs
have reached marginal stability, at which wave absorption
no longer takes place. For positive speeds,γ also has some
negative values, indicating that here the waves are still being
absorbed.

That the ion VDF approaches the limit of stability over a
wide range of velocities such that wave absorption ceases,
is what one generally expects from resonant pitch angle dif-
fusion leading to plateau formation. That this process takes
place in the interplanetary solar wind has been shown in a
recent study of the proton VDFs by Marsch and Tu (2001b)
discussed above. The strong wave absorption for negative
speeds explains the structure ofF⊥ and the generalized tem-
perature anisotropyA(v‖), as shown in Fig. 4. For a nearly
Maxwellian ion distribution, those ions withv‖ < 0 are
heated primarily, as shown in the previous section. With
ongoing heating, the oxygen VDF approaches marginal sta-
bility, and eventually even those ions with the lowest local
resonance frequencies may cease to gain wave energy.

Figure 6 shows that a major fraction of the oxygen ions
have a wave absorption coefficient close to zero, i.e. they are
transparent for the waves. This is an interesting aspect con-
cerning the wave absorption effects that the numerous differ-
ent heavy ion species may have in the solar corona, e.g. the
2000 ion species studied by Cranmer (2000). Ions with low
cyclotron frequencies could absorb a significant amount of
the spectral wave energy in spite of their low densities, but
when they reach the limit of stability this absorption ceases,
whereupon direct wave heating of ions with higher resonance
frequencies is enabled.
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6 Conclusions

A short review of the authors’ recent work on modelling of
the corona is presented with emphasis on key numerical re-
sults, remote-sensing and in situ observations and unresolved
problems. It has become clear that fluid and hybrid-kinetic
models cannot describe the essence of wave-particle interac-
tions. To describe them adequately, in the context of the idea
that high-frequency waves heat the solar corona, requires ki-
netic physics. A semi-kinetic approach with reduced particle
VDF and self-consistent wave ESD has provided valuable in-
sights into the coronal plasma physics. Qualitatively new and
quantitatively reliable simulation results are obtained which
seem to approximate that which is observed. The assumption
of fixed shapes of the VDFs or ESDs leads to spurious and
unphysical conclusions. The quasi-linear diffusion model
captures wave-particle processes in the corona in the case
of weak turbulence and also oblique wave propagation. The
problem of wave-energy transport and cascading remains un-
solved, but certainly deserves great attention in future work.
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