17,403 research outputs found
Radiance and Doppler shift distributions across the network of the quiet Sun
The radiance and Doppler-shift distributions across the solar network provide
observational constraints of two-dimensional modeling of transition-region
emission and flows in coronal funnels. Two different methods, dispersion plots
and average-profile studies, were applied to investigate these distributions.
In the dispersion plots, we divided the entire scanned region into a bright and
a dark part according to an image of Fe xii; we plotted intensities and Doppler
shifts in each bin as determined according to a filtered intensity of Si ii. We
also studied the difference in height variations of the magnetic field as
extrapolated from the MDI magnetogram, in and outside network. For the
average-profile study, we selected 74 individual cases and derived the average
profiles of intensities and Doppler shifts across the network. The dispersion
plots reveal that the intensities of Si ii and C iv increase from network
boundary to network center in both parts. However, the intensity of Ne viii
shows different trends, namely increasing in the bright part and decreasing in
the dark part. In both parts, the Doppler shift of C iv increases steadily from
internetwork to network center. The average-profile study reveals that the
intensities of the three lines all decline from the network center to
internetwork region. The binned intensities of Si ii and Ne viii have a good
correlation. We also find that the large blue shift of Ne viii does not
coincide with large red shift of C iv. Our results suggest that the network
structure is still prominent at the layer where Ne viii is formed in the quiet
Sun, and that the magnetic structures expand more strongly in the dark part
than in the bright part of this quiet Sun region.Comment: 10 pages,9 figure
Upflows in the upper transition region of the quiet Sun
We investigate the physical meaning of the prominent blue shifts of Ne VIII,
which is observed to be associated with quiet-Sun network junctions (boundary
intersections), through data analyses combining force-free-field extrapolations
with EUV spectroscopic observations. For a middle-latitude region, we
reconstruct the magnetic funnel structure in a sub-region showing faint
emission in EIT-Fe 195. This funnel appears to consist of several smaller
funnels that originate from network lanes, expand with height and finally merge
into a single wide open-field region. However, the large blue shifts of Ne VIII
are generally not associated with open fields, but seem to be associated with
the legs of closed magnetic loops. Moreover, in most cases significant upflows
are found in both of the funnel-shaped loop legs. These quasi-steady upflows
are regarded as signatures of mass supply to the coronal loops rather than the
solar wind. Our observational result also reveals that in many cases the
upflows in the upper transition region (TR) and the downflows in the middle TR
are not fully cospatial. Based on these new observational results, we suggest
different TR structures in coronal holes and in the quiet Sun.Comment: 4 pages, 4 figures, will appear in the Proceedings of the Solar wind
12 conferenc
Nonlinear elasticity of monolayer graphene
By combining continuum elasticity theory and tight-binding atomistic
simulations, we work out the constitutive nonlinear stress-strain relation for
graphene stretching elasticity and we calculate all the corresponding nonlinear
elastic moduli. Present results represent a robust picture on elastic behavior
of one-atom thick carbon sheets and provide the proper interpretation of recent
experiments. In particular, we discuss the physical meaning of the effective
nonlinear elastic modulus there introduced and we predict its value in good
agreement with available data. Finally, a hyperelastic softening behavior is
observed and discussed, so determining the failure properties of graphene.Comment: 4 page
Phonon anomaly in BaFe2As2
The detailed optical properties of BaFe2As2 have been determined over a wide
frequency range above and below the structural and magnetic transition at T_N =
138 K. A prominent in-plane infrared-active mode is observed at 253 cm^{-1}
(31.4 meV) at 295 K. The frequency of this vibration shifts discontinuously at
T_N; for T < T_N the frequency of this mode displays almost no temperature
dependence, yet it nearly doubles in intensity. This anomalous behavior appears
to be a consequence of orbital ordering in the Fe-As layers.Comment: 4 pages, 3 figures and one table (minor revisions
Multiple regulatory domains on the Byr2 protein kinase
Byr2 protein kinase, a homolog of mammalian mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEKK) and Saccharomyces cerevisiae STE11, is required for pheromone-induced sexual differentiation in the fission yeast Schizosaccharomyces pombe. Byr2 functions downstream of Ste4, Ras1, and the membrane-associated receptor-coupled heterotrimeric G-protein alpha subunit, Gpa1. Byr2 has a distinctive N-terminal kinase regulatory domain and a characteristic C-terminal kinase catalytic domain. Ste4 and Ras1 interact with the regulatory domain of Byr2 directly. Here, we define the domains of Byr2 that bind Ste4 and Ras1 and show that the Byr2 regulatory domain binds to the catalytic domain in the two-hybrid system. Using Byr2 mutants, we demonstrate that these direct physical interactions are all required for proper signaling. In particular, the physical association between Byr2 regulatory and catalytic domains appears to result in autoinhibition, the loss of which results in kinase activation. Furthermore, we provide evidence that Shk1, the S. pombe homolog of the STE20 protein kinase, can directly antagonize the Byr2 intramolecular interaction, possibly by phosphorylating Byr2
- …