1,004 research outputs found

    Simulation and Experimental Validation of a Misaligned Rotor in Journal Bearings using Different Levels of Detail

    Get PDF
    In this contribution, a given test rig of a rotor system with journal bearing is validated by using simulation models with different levels of detail. A special focus is placed on the misalignment between rotor and bearing axis. It is shown, how to consider misalignment in the numeric calculation of the bearing forces as well as in the modeling of the rotor system. With a model of the LAVAL rotor, the misalignment in the test rig is identified by measuring and simulating relative equilibrium positions of the rotor in the bearing at different rotational speeds. A measured rotor orbit due to unbalance is used to compare simulation results of different complex rotor models and discuss their accuracy and efficiency

    Prediction of Instability in Rotor-Seal Systems using Forward Whirl Magnetic Bearing Excitation

    Get PDF
    To separate different fluids and pressure levels in high-speed turbomachinery or pumps, mostly contactless seals are used. The leakage flow inside the seal gap applies forces to the vibrating rotor system in deflectional and tangential directions, that are dependent on the rotational speed. Above a speed limit, mainly tangential seal forces can lead to self-excited vibrations and, ultimately, rotor instability. This is similar to the “oil whip” phenomenon in journal bearings. To predict the speed limit, two methods are shown and compared: Simulations based on the bulk flow assumptions and an experimental method. To demonstrate the application, a test rig is used. The experimental method uses measured transfer functions, utilizing an active magnetic bearing for forward whirl excitation in the safe operational range. The speed limit can be predicted by analyzing and extrapolating the vibrational behavior of the rotor-seal system

    Motion of rotatory molecular motor and chemical reaction rate

    Full text link
    We examine the dependence of the physical quantities of the rotatory molecular motor, such as the rotation velocity and the proton translocation rate, on the chemical reaction rate using the model based only on diffusion process. A peculiar behavior of proton translocation is found and the energy transduction efficiency of the motor protein is enhanced by this behavior. We give a natural explanation that this behavior is universal when certain inequalities between chemical reaction rates hold. That may give a clue to examine whether the motion of the molecular motor is dominated by diffusion process or not.Comment: 12 pages, 8 figure

    Phonons in random alloys: the itinerant coherent-potential approximation

    Full text link
    We present the itinerant coherent-potential approximation(ICPA), an analytic, translationally invariant and tractable form of augmented-space-based, multiple-scattering theory in a single-site approximation for harmonic phonons in realistic random binary alloys with mass and force-constant disorder. We provide expressions for quantities needed for comparison with experimental structure factors such as partial and average spectral functions and derive the sum rules associated with them. Numerical results are presented for Ni_{55} Pd_{45} and Ni_{50} Pt_{50} alloys which serve as test cases, the former for weak force-constant disorder and the latter for strong. We present results on dispersion curves and disorder-induced widths. Direct comparisons with the single-site coherent potential approximation(CPA) and experiment are made which provide insight into the physics of force-constant changes in random alloys. The CPA accounts well for the weak force-constant disorder case but fails for strong force-constant disorder where the ICPA succeeds.Comment: 19 pages, 12 eps figures, uses RevTex

    Population-genetic nature of copy number variations in the human genome

    Get PDF
    Copy number variations (CNVs) are universal genetic variations, and their association with disease has been increasingly recognized. We designed high-density microarrays for CNVs, and detected 3000–4000 CNVs (4–6% of the genomic sequence) per population that included CNVs previously missed because of smaller sizes and residing in segmental duplications. The patterns of CNVs across individuals were surprisingly simple at the kilo-base scale, suggesting the applicability of a simple genetic analysis for these genetic loci. We utilized the probabilistic theory to determine integer copy numbers of CNVs and employed a recently developed phasing tool to estimate the population frequencies of integer copy number alleles and CNV–SNP haplotypes. The results showed a tendency toward a lower frequency of CNV alleles and that most of our CNVs were explained only by zero-, one- and two-copy alleles. Using the estimated population frequencies, we found several CNV regions with exceptionally high population differentiation. Investigation of CNV–SNP linkage disequilibrium (LD) for 500–900 bi- and multi-allelic CNVs per population revealed that previous conflicting reports on bi-allelic LD were unexpectedly consistent and explained by an LD increase correlated with deletion-allele frequencies. Typically, the bi-allelic LD was lower than SNP–SNP LD, whereas the multi-allelic LD was somewhat stronger than the bi-allelic LD. After further investigation of tag SNPs for CNVs, we conclude that the customary tagging strategy for disease association studies can be applicable for common deletion CNVs, but direct interrogation is needed for other types of CNVs

    Optical Properties of the Ultraluminous X-ray Source Holmberg IX X-1 and its Stellar Environment

    Full text link
    Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph,GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, as well as simultaneous Chandra X-ray data. The V ~ 22.6 spectroscopically identified optical counterpart is part of a loose cluster with an age <~ 20 Myr. Consequently, the mass upper limit on individual stars in the association is about 20 M_sun. The counterpart is more luminous than the other stars of the association, suggesting a non-negligible optical contribution from the accretion disk. An observed UV excess also points to non-stellar light similar to X-ray active low-mass X-ray binaries. A broad HeII4686 emission line identified in the optical spectrum of the ULX further suggests optical light from X-ray reprocessing in the accretion disk. Using stellar evolutionary tracks, we have constrained the mass of the counterpart to be >~ 10 M_sun, even if the accretion disk contributes significantly to the optical luminosity. Comparison of the photometric properties of the counterpart with binary models show that the donor may be more massive, >~ 25 M_sun, with the ULX system likely undergoing case AB mass transfer. Finally, the counterpart exhibits photometric variability of 0.14 mag between two HST observations separated by 50 days which could be due to ellipsoidal variations and/or disk reprocessing of variable X-ray emission.Comment: 14 pages, 14 figures, accepted for publication in Ap

    Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury

    Get PDF
    Mortality from sepsis has remained high despite recent advances in supportive and targeted therapies. Toll-like receptors (TLRs) sense bacterial products and stimulate pathogenic innate immune responses. Mice deficient in the common adapter protein MyD88, downstream from most TLRs, have reduced mortality and acute kidney injury (AKI) from polymicrobial sepsis. However, the identity of the TLR(s) responsible for the host response to polymicrobial sepsis is unknown. Here, we show that chloroquine, an inhibitor of endocytic TLRs (TLR3, 7, 8, 9), improves sepsis-induced mortality and acute kidney injury in a clinically relevant polymicrobial sepsis mouse model, even when administered 6h after the septic insult. Chloroquine administration attenuated the decline in renal function, splenic apoptosis, serum markers of damage to other organs, and prototypical serum pro- and anti-inflammatory cytokines TNF-alpha and IL-10. An oligodeoxynucleotide inhibitor (H154) of TLR9 and TLR9-deficient mice mirror the actions of chloroquine in all functional parameters that we tested. In addition, chloroquine decreased TLR9 protein abundance in spleen, further suggesting that TLR9 signaling may be a major target for the protective actions of chloroquine. Our findings indicate that chloroquine improves survival by inhibiting multiple pathways leading to polymicrobial sepsis, and that chloroquine and TLR9 inhibitors represent viable broad-spectrum and targeted therapeutic strategies, respectively, that are promising candidates for further clinical development
    corecore