1,488 research outputs found
Generation of spiral bevel gears with zero kinematical errors and computer aided tooth contact analysis
Kinematic errors in spiral bevel gears are a major source of noise and vibrations in transmissions. A method for the generation of Gleason's spiral bevel gears which provides conjugated gear tooth surfaces and an improved bearing contact was developed. A computer program for the simulation of meshing, misalignment, and bearing contact was written
New generation methods for spur, helical, and spiral-bevel gears
New methods for generating spur, helical, and spiral-bevel gears are proposed. These methods provide the gears with conjugate gear tooth surfaces, localized bearing contact, and reduced sensitivity to gear misalignment. Computer programs have been developed for simulating gear meshing and bearing contact
Spiral bevel and circular arc helical gears: Tooth contact analysis and the effect of misalignment on circular arc helical gears
A computer aided method for tooth contact analysis was developed and applied. Optimal machine-tool settings for spiral bevel gears are proposed and when applied indicated that kinematic errors can be minimized while maintaining a desirable bearing contact. The effect of misalignment for circular arc helical gears was investigated and the results indicted that directed pinion refinishing can compensate the kinematic errors due to misalignment
Transverse force generated by an electric field and transverse charge imbalance in spin-orbit coupled systems
We use linear response theory to study the transverse force generated by an
external electric field and hence possible charge Hall effect in spin-orbit
coupled systems. In addition to the Lorentz force that is parallel to the
electric field, we find that the transverse force perpendicular to the applied
electric field may not vanish in a system with an anisotropic energy
dispersion. Surprisingly, in contrast to the previous results, the transverse
force generated by the electric field does not depend on the spin current, but
in general, it is related to the second derivative of energy dispersion only.
Furthermore, we find that the transverse force does not vanish in the
Rashba-Dresselhaus system. Therefore, the non-vanishing transverse force acts
as a driving force and results in charge imbalance at the edges of the sample.
The estimated ratio of the Hall voltage to the longitudinal voltage is . The disorder effect is also considered in the study of the
Rashba-Dresselhaus system. We find that the transverse force vanishes in the
presence of impurities in this system because the vertex correction and the
anomalous velocity of the electron accidently cancel each other
A Linux PC cluster for lattice QCD with exact chiral symmetry
A computational system for lattice QCD with exact chiral symmetry is
described. The platform is a home-made Linux PC cluster, built with
off-the-shelf components. At present this system constitutes of 64 nodes, with
each node consisting of one Pentium 4 processor (1.6/2.0/2.5 GHz), one Gbyte of
PC800/PC1066 RDRAM, one 40/80/120 Gbyte hard disk, and a network card. The
computationally intensive parts of our program are written in SSE2 codes. The
speed of this system is estimated to be 70 Gflops, and its price/performance is
better than $1.0/Mflops for 64-bit (double precision) computations in quenched
QCD. We discuss how to optimize its hardware and software for computing quark
propagators via the overlap Dirac operator.Comment: 24 pages, LaTeX, 2 eps figures, v2:a note and references added, the
version published in Int. J. Mod. Phys.
One-to-one full scale simulations of laser wakefield acceleration using QuickPIC
We use the quasi-static particle-in-cell code QuickPIC to perform full-scale,
one-to-one LWFA numerical experiments, with parameters that closely follow
current experimental conditions. The propagation of state-of-the-art laser
pulses in both preformed and uniform plasma channels is examined. We show that
the presence of the channel is important whenever the laser self-modulations do
not dominate the propagation. We examine the acceleration of an externally
injected electron beam in the wake generated by 10 J laser pulses, showing that
by using ten-centimeter-scale plasma channels it is possible to accelerate
electrons to more than 4 GeV. A comparison between QuickPIC and 2D OSIRIS is
provided. Good qualitative agreement between the two codes is found, but the 2D
full PIC simulations fail to predict the correct laser and wakefield
amplitudes.Comment: 5 pages, 5 figures, accepted for publication IEEE TPS, Special Issue
- Laser & Plasma Accelerators - 8/200
Beam loading in the nonlinear regime of plasma-based acceleration
A theory that describes how to load negative charge into a nonlinear,
three-dimensional plasma wakefield is presented. In this regime, a laser or an
electron beam blows out the plasma electrons and creates a nearly spherical ion
channel, which is modified by the presence of the beam load. Analytical
solutions for the fields and the shape of the ion channel are derived. It is
shown that very high beam-loading efficiency can be achieved, while the energy
spread of the bunch is conserved. The theoretical results are verified with the
Particle-In-Cell code OSIRIS.Comment: 5 pages, 2 figures, to appear in Physical Review Letter
A global simulation for laser driven MeV electrons in -diameter fast ignition targets
The results from 2.5-dimensional Particle-in-Cell simulations for the
interaction of a picosecond-long ignition laser pulse with a plasma pellet of
50- diameter and 40 critical density are presented. The high density
pellet is surrounded by an underdense corona and is isolated by a vacuum region
from the simulation box boundary. The laser pulse is shown to filament and
create density channels on the laser-plasma interface. The density channels
increase the laser absorption efficiency and help generate an energetic
electron distribution with a large angular spread. The combined distribution of
the forward-going energetic electrons and the induced return electrons is
marginally unstable to the current filament instability. The ions play an
important role in neutralizing the space charges induced by the the temperature
disparity between different electron groups. No global coalescing of the
current filaments resulted from the instability is observed, consistent with
the observed large angular spread of the energetic electrons.Comment: 9 pages, 6 figures, to appear in Physics of Plasmas (May 2006
- …