1,841 research outputs found

    Two-Way Training for Discriminatory Channel Estimation in Wireless MIMO Systems

    Full text link
    This work examines the use of two-way training to efficiently discriminate the channel estimation performances at a legitimate receiver (LR) and an unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless system. This work improves upon the original discriminatory channel estimation (DCE) scheme proposed by Chang et al where multiple stages of feedback and retraining were used. While most studies on physical layer secrecy are under the information-theoretic framework and focus directly on the data transmission phase, studies on DCE focus on the training phase and aim to provide a practical signal processing technique to discriminate between the channel estimation performances at LR and UR. A key feature of DCE designs is the insertion of artificial noise (AN) in the training signal to degrade the channel estimation performance at UR. To do so, AN must be placed in a carefully chosen subspace based on the transmitter's knowledge of LR's channel in order to minimize its effect on LR. In this paper, we adopt the idea of two-way training that allows both the transmitter and LR to send training signals to facilitate channel estimation at both ends. Both reciprocal and non-reciprocal channels are considered and a two-way DCE scheme is proposed for each scenario. {For mathematical tractability, we assume that all terminals employ the linear minimum mean square error criterion for channel estimation. Based on the mean square error (MSE) of the channel estimates at all terminals,} we formulate and solve an optimization problem where the optimal power allocation between the training signal and AN is found by minimizing the MSE of LR's channel estimate subject to a constraint on the MSE achievable at UR. Numerical results show that the proposed DCE schemes can effectively discriminate between the channel estimation and hence the data detection performances at LR and UR.Comment: 1

    Myth

    Get PDF

    Strongly Correlated Two-Photon Transport in One-Dimensional Waveguide Coupled to A Two-Level System

    Full text link
    We show that two-photon transport is strongly correlated in one-dimensional waveguide coupled to a two-level system. The exact S-matrix is constructed using a generalized Bethe-Ansatz technique. We show that the scattering eigenstates of this system include a two-photon bound state that passes through the two-level system as a composite single particle. Also, the two-level system can induce effective attractive or repulsive interactions in space for photons. This general procedure can be applied to the Anderson model as well.Comment: 12 pages. 3 figures. Accepted by Physical Review Letter

    Coordinated Multicasting with Opportunistic User Selection in Multicell Wireless Systems

    Full text link
    Physical layer multicasting with opportunistic user selection (OUS) is examined for multicell multi-antenna wireless systems. By adopting a two-layer encoding scheme, a rate-adaptive channel code is applied in each fading block to enable successful decoding by a chosen subset of users (which varies over different blocks) and an application layer erasure code is employed across multiple blocks to ensure that every user is able to recover the message after decoding successfully in a sufficient number of blocks. The transmit signal and code-rate in each block determine opportunistically the subset of users that are able to successfully decode and can be chosen to maximize the long-term multicast efficiency. The employment of OUS not only helps avoid rate-limitations caused by the user with the worst channel, but also helps coordinate interference among different cells and multicast groups. In this work, efficient algorithms are proposed for the design of the transmit covariance matrices, the physical layer code-rates, and the target user subsets in each block. In the single group scenario, the system parameters are determined by maximizing the group-rate, defined as the physical layer code-rate times the fraction of users that can successfully decode in each block. In the multi-group scenario, the system parameters are determined by considering a group-rate balancing optimization problem, which is solved by a successive convex approximation (SCA) approach. To further reduce the feedback overhead, we also consider the case where only part of the users feed back their channel vectors in each block and propose a design based on the balancing of the expected group-rates. In addition to SCA, a sample average approximation technique is also introduced to handle the probabilistic terms arising in this problem. The effectiveness of the proposed schemes is demonstrated by computer simulations.Comment: Accepted by IEEE Transactions on Signal Processin

    Generation of spiral bevel gears with zero kinematical errors and computer aided tooth contact analysis

    Get PDF
    Kinematic errors in spiral bevel gears are a major source of noise and vibrations in transmissions. A method for the generation of Gleason's spiral bevel gears which provides conjugated gear tooth surfaces and an improved bearing contact was developed. A computer program for the simulation of meshing, misalignment, and bearing contact was written

    Transverse force generated by an electric field and transverse charge imbalance in spin-orbit coupled systems

    Full text link
    We use linear response theory to study the transverse force generated by an external electric field and hence possible charge Hall effect in spin-orbit coupled systems. In addition to the Lorentz force that is parallel to the electric field, we find that the transverse force perpendicular to the applied electric field may not vanish in a system with an anisotropic energy dispersion. Surprisingly, in contrast to the previous results, the transverse force generated by the electric field does not depend on the spin current, but in general, it is related to the second derivative of energy dispersion only. Furthermore, we find that the transverse force does not vanish in the Rashba-Dresselhaus system. Therefore, the non-vanishing transverse force acts as a driving force and results in charge imbalance at the edges of the sample. The estimated ratio of the Hall voltage to the longitudinal voltage is 103\sim 10^{-3}. The disorder effect is also considered in the study of the Rashba-Dresselhaus system. We find that the transverse force vanishes in the presence of impurities in this system because the vertex correction and the anomalous velocity of the electron accidently cancel each other

    Spiral bevel and circular arc helical gears: Tooth contact analysis and the effect of misalignment on circular arc helical gears

    Get PDF
    A computer aided method for tooth contact analysis was developed and applied. Optimal machine-tool settings for spiral bevel gears are proposed and when applied indicated that kinematic errors can be minimized while maintaining a desirable bearing contact. The effect of misalignment for circular arc helical gears was investigated and the results indicted that directed pinion refinishing can compensate the kinematic errors due to misalignment
    corecore