39 research outputs found

    Microwave neural processing and broadcasting with spintronic nano-oscillators

    Full text link
    Can we build small neuromorphic chips capable of training deep networks with billions of parameters? This challenge requires hardware neurons and synapses with nanometric dimensions, which can be individually tuned, and densely connected. While nanosynaptic devices have been pursued actively in recent years, much less has been done on nanoscale artificial neurons. In this paper, we show that spintronic nano-oscillators are promising to implement analog hardware neurons that can be densely interconnected through electromagnetic signals. We show how spintronic oscillators maps the requirements of artificial neurons. We then show experimentally how an ensemble of four coupled oscillators can learn to classify all twelve American vowels, realizing the most complicated tasks performed by nanoscale neurons

    Spin torque resonant vortex core expulsion for an efficient radio-frequency detection scheme

    Full text link
    Spin-polarised radio-frequency currents, whose frequency is equal to that of the gyrotropic mode, will cause an excitation of the core of a magnetic vortex confined in a magnetic tunnel junction. When the excitation radius of the vortex core is greater than that of the junction radius, vortex core expulsion is observed, leading to a large change in resistance, as the layer enters a predominantly uniform magnetisation state. Unlike the conventional spin-torque diode effect, this highly tunable resonant effect will generate a voltage which does not decrease as a function of rf power, and has the potential to form the basis of a new generation of tunable nanoscale radio-frequency detectors

    Temperature dependence of the interface moments in Co2MnSi thin films

    Get PDF
    Copyright © 2008 American Institute of PhysicsX-ray magnetic circular dichroism (XMCD) is utilized to explore the temperature dependence of the interface moments in Co2MnSi (CMS) thin films capped with aluminum. By increasing the thickness of the capping layer, we demonstrate enhanced interface sensitivity of the measurements. L2(1)-ordered CMS films show no significant temperature dependence of either the Co or Mn interface moments. However, disordered CMS films show a decreased moment at low temperature possibly caused by increased Mn-Mn antiferromagnetic coupling. It is suggested that for ordered L2(1) CMS films the temperature dependence of the tunneling magnetoresistance is not related to changes in the interface moments

    Temporal pattern recognition with delayed feedback spin- torque nano-oscillators

    No full text
    International audienceThe recent demonstration of neuromorphic computing with spin-torque nano-oscillators has opened a path to energy efficient data processing. The success of this demonstration hinged on the intrinsic short-term memory of the oscillators. In this study, we extend the memory of the spin-torque nano-oscillators through time-delayed feedback. We leverage this extrinsic memory to increase the efficiency of solving pattern recognition tasks that require memory to discriminate different inputs. The large tunability of these non-linear oscillators allows us to control and optimize the delayed feedback memory using different operating conditions of applied current and magnetic field
    corecore