72 research outputs found

    Double-Slit Interference and Temporal Topos

    Get PDF
    The electron double-slit interference is re-examined from the point of view of temporal topos. Temporal topos (or t-topos) is an abstract algebraic (categorical) method using the theory of sheaves. A brief introduction to t-topos is given. When the structural foundation for describing particles is based on t-topos, the particle-wave duality of electron is a natural consequence. A presheaf associated with the electron represents both particle-like and wave-like properties depending upon whether an object in the site (t-site) is specified (particle-like) or not (wave-like). It is shown that the localization of the electron at one of the slits is equivalent to choosing a particular object in the t-site and that the electron behaves as a wave when it passes through a double-slit because there are more than one object in the t-site. Also, the single-slit diffraction is interpreted as a result of the possibility of many different ways of factoring a morphism between two objects

    Vacuum Energy Density for Massless Scalar Fields in Flat Homogeneous Spacetime Manifolds with Nontrivial Topology

    Full text link
    Although the observed universe appears to be geometrically flat, it could have one of 18 global topologies. A constant-time slice of the spacetime manifold could be a torus, Mobius strip, Klein bottle, or others. This global topology of the universe imposes boundary conditions on quantum fields and affects the vacuum energy density via Casimir effect. In a spacetime with such a nontrivial topology, the vacuum energy density is shifted from its value in a simply-connected spacetime. In this paper, the vacuum expectation value of the stress-energy tensor for a massless scalar field is calculated in all 17 multiply-connected, flat and homogeneous spacetimes with different global topologies. It is found that the vacuum energy density is lowered relative to the Minkowski vacuum level in all spacetimes and that the stress-energy tensor becomes position-dependent in spacetimes that involve reflections and rotations.Comment: 25 pages, 11 figure

    Soft Gamma-ray Detector for the ASTRO-H Mission

    Full text link
    ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (40-600 keV) at a background level 10 times better than the current instruments on orbit. SGD is complimentary to ASTRO-H's Hard X-ray Imager covering the energy range of 5-80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes. The ASTRO-H mission is approved by ISAS/JAXA to proceed to a detailed design phase with an expected launch in 2014. In this paper, we present science drivers and concept of the SGD instrument followed by detailed description of the instrument and expected performance.Comment: 17 pages, 15 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray

    Massive scalar field in multiply connected flat spacetimes

    Full text link
    The vacuum expectation value of the stress-energy tensor 0Tμν0\left\langle 0\left| T_{\mu\nu} \right|0\right\rangle is calculated in several multiply connected flat spacetimes for a massive scalar field with arbitrary curvature coupling. We find that a nonzero field mass always decreases the magnitude of the energy density in chronology-respecting manifolds such as R3×S1R^3 \times S^1, R2×T2R^2 \times T^2, R1×T3R^1 \times T^3, the M\"{o}bius strip, and the Klein bottle. In Grant space, which contains nonchronal regions, whether 0Tμν0\left\langle 0\left| T_{\mu\nu} \right|0\right\rangle diverges on a chronology horizon or not depends on the field mass. For a sufficiently large mass 0Tμν0\left\langle 0\left| T_{\mu\nu} \right|0\right\rangle remains finite, and the metric backreaction caused by a massive quantized field may not be large enough to significantly change the Grant space geometry.Comment: 19 pages, REVTeX, 5 figures in separate uuencoded compressed fil

    The Nature of Ultra-Luminous Compact X-Ray Sources in Nearby Spiral Galaxies

    Get PDF
    Studies were made of ASCA spectra of seven ultra-luminous compact X-ray sources (ULXs) in nearby spiral galaxies; M33 X-8 (Takano et al. 1994), M81 X-6 (Fabbiano 1988b; Kohmura et al. 1994; Uno 1997), IC 342 Source 1 (Okada et al. 1998), Dwingeloo 1 X-1 (Reynolds et al. 1997), NGC 1313 Source B (Fabbiano & Trinchieri 1987; Petre et al. 1994), and two sources in NGC 4565 (Mizuno et al. 1999). With the 0.5--10 keV luminosities in the range 10^{39-40} ergs/s, they are thought to represent a class of enigmatic X-ray sources often found in spiral galaxies. For some of them, the ASCA data are newly processed, or the published spectra are reanalyzed. For others, the published results are quoted. The ASCA spectra of all these seven sources have been described successfully with so called multi-color disk blackbody (MCD) emission arising from optically-thick standard accretion disks around black holes. Except the case of M33 X-8, the spectra do not exhibit hard tails. For the source luminosities not to exceed the Eddington limits, the black holes are inferred to have rather high masses, up to ~100 solar masses. However, the observed innermost disk temperatures of these objects, Tin = 1.1--1.8 keV, are too high to be compatible with the required high black-hole masses, as long as the standard accretion disks around Schwarzschild black holes are assumed. Similarly high disk temperatures are also observed from two Galactic transients with superluminal motions, GRO 1655-40 and GRS 1915+105. The issue of unusually high disk temperature may be explained by the black hole rotation, which makes the disk get closer to the black hole, and hence hotter.Comment: submitted to ApJ, December 199

    Suzaku wide-band observations of SN 1006

    Full text link
    We report on the wide band spectra of SN 1006 as observed by Suzaku. Thermal and nonthermal emission are successfully resolved thanks to the excellent spectral response of Suzaku's X-ray CCD XIS. The nonthermal emission cannot be reproduced by a simple power-law model but needs a roll-off at 5.7×1016\times 10^{16} Hz = 0.23 keV. The roll-off frequency is significantly higher in the northeastern rim than in the southwestern rim. We also have placed the most stringent upper limit of the flux above 10 keV using the Hard X-ray Detector.Comment: 16 pages, 8 figures, PASJ, in pres
    corecore