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The electron double-slit interference is re-examined from the point of view of 
temporal topos. Temporal topos (or t-topos) is an abstract algebraic (cate
gorical) method using the theory of sheaves. A brief introduction to t-topos 
is given. When the structural foundation for describing particles is based on 
t-topos, the particle-wave duality of electron is a natural consequence. A pres
heaf associated with the electron represents both particle-like and wave-like 
properties depending upon whether an object in the site (t-site) is specified 
(particle-like) or not (wave-like). It is shown that the localization of the 
electron at one of the slits is equivalent to choosing a particular object in the 
t-site and that the electron behaves as a wave when it passes through a dou
ble-slit because there are more than one object in the t-site. Also, the single-slit 
diffraction is interpreted as a result of the possibility of many different ways 
of factoring a morphism between two objects. 

1. INTRODUCTION—THE ELECTRON DOUBLE-SLIT 
INTERFERENCE 

The electron double-slit interference is one of the most important exper
iments in physics. It shows both particle-like behavior and wave-like 
behavior of electrons. Also, the experiment shows statistical properties of 
quantum mechanics. The observed location of an individual electron on 
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Fig. 1. Monoenergetic electrons fired from an electron gun pass 
through double-slits on the mask and arrive at a detector on the 
screen. 

the screen is random, but an ensemble of identically prepared electrons 
exhibits a distribution resembling an optical interference pattern. This sec
tion of paper covers a brief review of the electron double-slit interference 
experiment including the description of apparatus, observations, and their 
implications on particle-wave duality. 

1.1. Experiment Setup 

In a typical setup, a beam of monoenergetic electrons from a source 
is incident on a mask with two narrow, parallel slits (labeled A and B in 
Fig. 1). The spacing between the slits is assumed to be much larger than 
the width of the slit. The rate at which electrons are emitted is so low that 
basically electrons arrive at the mask one at a time. This will eliminate a 
possibility that one electron passing through one slit may interfere with 
another electron through the second slit. After passing through the slits, 
electrons fall on a screen which is placed at a distance much greater than 
the spacing between the slits. On the screen is a particle detector which 
can be placed at various locations along the x-axis. The detector counts 
the number of electrons arriving at the position x. 

1.2. Observations 

For each electron shot toward the slits, always only one electron 
is registered by the detector somewhere on the screen. Positions of 
consecutive electrons on the screen show no apparent correlation between 
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Fig. 2. A photon from a flashlight behind the mask is scattered 
by a passing electron revealing which slit the electron has passed 
through. 

them, and the pattern at first appears random even though the electrons 
are emitted with an identical momentum from the source. As more and 
more electrons reach the screen, the probability density of the electrons’ 
positions begins to resemble the interference pattern of monochromatic, 
coherent light passing through a double-slit. This outcome shows that an 
electron has some wave-like properties as it passes through the slits and 
that it behaves like a particle since it has a definite position when detected 
on the screen. 

If an electron has a definite position at each instant of time on its 
way from the source to the screen, then it must go through one slit or the 
other. In order to find out which slit the electron passes through, a flash
light could be placed behind the mask (Fig. 2). A photon from the flash 
light is scattered by the electron after passing through one of the slits, 
and by measuring the direction into which the photon is deflected, the 
location where it interacted with the electron and thus which slit the elec
tron passed through could be determined. Assuming every electron inter
acts with a photon, a probability distribution of electrons for each slit can 
be constructed. The result is the following: the probability density of find
ing the electrons that have passed through a certain slit is the same as the 
single-slit diffraction pattern of light on the screen. The distribution for 
each slit is identical to the one that would be expected if the other slit 
were completely covered. The total probability density in this experiment 
is a simple algebraic sum of the two noninterferring densities for individ
ual slits. It is not the same as the probability density obtained in the orig
inal experiment in which the slit that electron passes through is unknown. 

The interaction between electron and photon does change the elec
tron’s trajectory as the photon carries some momentum. Since the photon’s 



momentum is inversely proportional to its wavelength, increasing its wave
length can decrease its disruptive effect on the electron’s trajectory during 
the scattering. However, doing so increases the uncertainty in the measure
ment of the position where the electron-photon collision takes place. The 
interference pattern appears only for wavelengths greater than the order 
of the spacing between the slits, and with such a long-wavelength photon, 
the uncertainty becomes so large that which slit the electron has passed 
through can no longer be determined.(1) To this date, every attempt to 
determine the electron’s path and simultaneously maintain the interference 
pattern on the screen has failed. It appears that electron has both particle-
like property and wave-like property, but we cannot observe both proper
ties at the same time. 

These apparently incompatible properties of electrons led Niels Bohr 
to propose the complementarity principle which states that it is impossible 
to describe the electron by the particle model alone or by the wave model 
alone. Both models are required to fully describe the electron. However, 
there exists a single, abstract algebraic object called temporal topos which 
can have both particle-like and wave-like properties. Temporal topos (or 
t-topos) could be a mathematical foundation for electrons exhibiting the 
particle-wave duality. In the next section, a concise introduction to t-topos 
is given. 

2. INTRODUCTION TO T -TOPOS AND PRESHEAFIFICATION 
OF OBSERVABLES 

We will give a brief introduction to the notions of a category and a 
(pre)sheaf. For a complete and precise description of the theories of cate
gories and sheaves, we recommend Refs. 2 or 3. 

2.1. Category 

A category C consists of objects and morphisms. Let Ob(C) be the set 
(or class) of objects of C. Then for A, B ∈ Ob(C), HomC(A, B) is the set 
of all morphisms from A to B. For  f ∈ HomC (A, B) and g ∈ HomC(B, C) 
(which are often written as f : A −→ B and g: B −→ C), the composition 
g ◦ f ∈ HomC(A, C) is defined. Then for h : C −→ D we have h ◦ (g ◦ 
f )  = (h ◦ g) ◦ f . For each object A of C, there exists an identity morphism 
1A: A −→ A such that 1A ◦ f = f and g ◦ 1A = g for any f : B −→ A and 
g: A −→ C. 



Remark 1. In general, for a category C, the dual category, denoted as 
Copp or C◦ , has the same objects as the original category C. However, a 

f f ◦ 
B in Coppmorphism A −→ B in C becomes A = A◦ ←− B◦ = . 

Example 1. Let (Sets) be the category of sets. Namely Ob(Sets) con
sists of sets, and morphisms in (Sets) are set-theoretic mappings. 

Example 2. Let (Vec) be the category of vector spaces over complex 
numbers C. Then Ob(Vec) consists of vector spaces over C, and mor
phisms of (Vec) are C-linear transformations. 

Example 3. Let (Ab) be the category of Abelian groups. Then Ob(Ab) 
consists of Abelian groups, and the morphisms in (Ab) are Abelian group 
homomorphisms. 

Next, let C and C � be general categories. The product category C × C� 
has its objects of the form (A, A� ), where A ∈ Ob(C) and A� ∈ Ob(C� ). 
A morphism from (A, A� ) to (B, B � ) in C × C� is a pair (f, f � ) where 
f : A −→ B in C and f � : A� −→ B � in C� . 

We will define a functor from a category C to another category D. A  
functor F from C to D, written as F : C � D, takes an object A in C to 
an object FA  in D, and also F takes a morphism f : A −→ B in C to a 
morphism Ff : FA  −→ FB  in D. Then F satisfies the following: 

(1) For f : A −→ B and g: B −→ C in C, F(g  ◦ f )  = Fg  ◦ Ff : FA  −→ 
FC  in D. 

(2) For 1A: A −→ A, F 1A = 1FA: FA  −→ FA  in D. 

Remark 2. The functor F is said to be a covariant functor if it does 
Ff

not change the direction of a morphism: FA  −→ FB. On the other hand, 
Ff

if the direction is reversed, FA  ←− FB, then F is a contravariant functor. 

2.2. Presheaf 

The concept of a (pre)sheaf F is classically defined as a contravari
ant functor F from the associated category with a topological space T to 
the category of sets. Namely, F(U)  is a set for any open subset U of T . 
We need the following more flexible generalization of the above classical 
definition of a (pre)sheaf for our purpose. 



�� 

�� 

First, we will define the category induced by a topological space. Let 
T be a topological space. For open sets V and U in T , if  V ⊂ U then 
define the set of morphisms from V to U to be { ι} , where ι : V �→ U is 
the inclusion mapping. If V � ⊂ U , then define the set of morphisms from 
V to U to be an empty set. Next, define the category T associated with 
the topological space T as follows: Ob(T ) consists of all open sets in T , 

ι
and for V,U  ∈ Ob(T ), HomT (V , U) = {  ι} where V �→ U for V ⊂ U , and 
HomT (V , U) = ∅ for V � U .⊂ Then the definition of a presheaf is the 
following. A presheaf F is a contravariant functor from T to a category 
C. The category of presheaves on T is simply CT ◦ where T ◦ is the dual 
category of T . 

Remark 3. Let C and C� be categories. A contravariant functor F : C � 
C� is a covariant functor F : C◦ � C� . A contravariant functor G: C � C� is 
a covariant functor G: C � C�◦ . 

For our t-topos, we replace T by a general site S and also replace C 
by a product category of categories Cα, α ∈ �, where � is an index set. �� �S◦ Namely, we consider Cα .α∈ � 

2.3. Site 

Since we need more than one morphism between two objects in the 
initial category, we need to consider a site. A site is a category with a 
Grothendieck topology, and its definition is as follows. Let S be a cate
gory. Then S is said to be a site if there exists a set Cov(S) of cover

ιiings (families of morphisms) { Ui −→ U} in S satisfying the following 
conditions: 

ι� 
(1) An isomorphism	 U � −→ U is a covering of U and thus an ele

ment of Cov(S). 
f	 ιi(2) Let V −→ U be a morphism in S. For a covering { Ui −→ U} i∈ I , 

{ Ui × U V −→ V } is a covering of V . The commutative diagram 
for this is shown in Fig. 3. 

ιi	 ιij
(3) For a covering	 { Ui −→ U} in S ∈ Cov(S), if  { Vij Ui } is 

a covering of	 Ui , then the family of morphisms obtained by the 
ιi ◦ ιij

composition { Vij U} j∈ Ji , i∈ I is a covering of U . 

A set of morphisms { Ui −→ U} which satisfies (1)–(3) is called a covering 
of U . Thus, Cov(S) is a set of coverings of the object U for U ∈ S, and 
it should be written as 
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Fig. 3. Covering of V . 

Cov(S) = {{  Ui −→ U} i∈ I ; U∈ S } . (1) 

The site S is a category with the set Cov(S), and it is often called a cat
egory with a Grothendieck topology (for more on site, see Refs. 2–5). 

2.4. t-Topos and Presheafification of Physical Quantities 

A temporal topos, or t-topos, is the category Ŝ of presheaves over a 
site S (which we call the t-site) to a product category of categories indexed 
by a set �.1 Namely, 

� �Sopp 

Ŝ = Cα . (2) 
α∈ � 

The objects Ob(Ŝ ) of category t-topos consist of (mα), indexed by the 
index set �, where each mα is a presheaf over the t-site S (i.e., m is 
a contravariant functor from S to the product category Cα). Morα∈ � 
phisms in the t-topos consist of natural transformations (sα), indexed by 
�, between presheaves (mα) and (m� ); i.e., in each Cα, α ∈ �,α

sα: mα −→ m (3)α 

is a morphism between contravariant functors mα and m . More explicitly, α

sα(V ): mα(V ) −→ m (V ) (4)α

is a morphism from the object mα(V ) to the object m (V ) for an object α

V in t-site S. 

1 The name “t-topos” for the category of presheaves from a t-site has been used simply as 
a terminology at this elemental stage of our theory. However, when the notion of t-topos 
is more fully developed, the name t-topos may be evident and more clarified. 
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The target category is the product category α∈ � Cα, indexed by 
�, whose components are discrete categories C2, C1, CPlanck, . . .  , where 
2, 1, Planck ∈ � (i.e., categories with no morphisms except identity mor
phisms) and nondiscrete categories where measurements (morphisms) may 
exist over certain t-site objects. Note also that in general the dual (oppo
site) category is often used when contravariant nature is changed to covar
iant nature. As for t-topos, the (fixed) t-site S is replaced by Sopp so that 
objects in t-topos Ŝ become covariant functors from the dual Sopp to the 
target category Cα (for a more precise description of t-topos theory, α∈ � 
see Refs. 5 and 6). 

A physical system under study is to be represented by Ŝ . Let C1 be 
the discrete category of particles. An object of C1 is a particle in micro
cosm, and as a category, C1 is discrete; i.e., the only morphisms in C1 are 

1Xthe identities 1X such that X −→ X for X ∈ Ob(C1). Here the microcosm 
includes physical properties, such as positions and momenta of individual 
particles at the quantum level. In contract, macroscopic properties of the 
system at the classical level form the macrocosm category C2. 

It is possible to introduce another category CPlanck below the quantum 
level (Cquantum) to describe phenomena at the Planck scale and even those 
at the sub-Planck scale (see Ref. 7 for the t-topos theoretic definition of 
a sub-Planck object). However, a (ur-)particle, as the direct limit object, 
at the (sub)Planck level is only a categorically defined universal object 
(i.e., the object satisfying the universal mapping property in the category) 
(see Refs. 3, 7, and 8 for direct and inverse limits). It is our intention to 
describe observable physical entities such as particles, position, time, and 
energy with presheaves. We do not need delicate topological properties of 
the t-site for microcosmic study. However, we expect that topology of the 
t-site will play an important role for the study of singularities and related 
topics in general relativity. 

In order to describe an electron e, we associate with it a presheaf e in 
the following sense: there exists an object V in the t-site S such that in C1, 

e = e(V ). (5) 

Then we define that the presheaf e is in a “particle ur-state” when an 
object V is chosen as in Eq. (5) and thus in a localized state. It can be 
said that the electron presheaf e is manifested into a particle e when the 
object V is specified. The electron is not in a particle state in the usual 
sense. An observation of the electron resulting in real numbers associated 
with the electron’s position, energy, and momentum involves a transfer of 
information from e(V ) to a presheafified observer, and it is explained in 
the next section. 



When an object of S is not specified for e (i.e., e is in a nonlocalized 
state), e is said to be in a “wave ur-state,” written as either {e(V )}V∈Ob(S) 
or e(−). Note that e(−) may be interpreted as a wave function-like entity 
which collapses into a localized particle when the object V is specified. 
Furthermore, it is possible to consider e as being composed of several 
presheaves which are to be evaluated at objects of S. This notion of 
the wave ur-state will be expanded later when the double-slit interfer
ence experiment is examined. And for the fundamental concepts in t-topos 
(see Refs. 5 and 6). Also, the application of t-topos to nonlocal quantum 
entanglement in the EPR-type experiments can be found in Refs. 8 and 9. 

2.5. Presheafification of Time and Space 

For an electron e in C1, time t and position x are associated with it 
locally. Let τ and κ be presheaves associated with time and space, respec
tively. That is, we presheafify time and space as in Refs. 5 and 6. The pres-
heaves τ and κ are objects of Ŝ and are defined over a common object in 
the t-site S so that physical time and space, t and x, are related to τ and 
κ by 

t = τ(V )  and x = κ(V ).  (6) 

The object V of the t-site S can be considered as a generalized time 
period. What one observes in C1 is a “slice” (or the microcosm compo
nent) of the associated presheaf evaluated at a certain generalized time 
period of S. A pair (τ (V ), κ(V )) plays a role of a local coordinate system 
of e(V ) (see Ref. 7 for the relativistic version of t-topos). 

The coordinate pair (τ, κ) can be considered as one object of Ŝ, 
and since it is associated with a certain electron presheaf e, it should be 
denoted as (τe, κe) to clarify its affiliation with e (see also Refs. 6 and 7 for 
the dependency of presheaves τ and κ on a particle (the associated pres
heaf)). In general, if m1,m2, . . .  ,mr are objects of Ŝ and if the r-tuple 
(m1,m2, . . .  ,mr) can be considered as one object of Ŝ over a restricted 
subset of the set of objects in S, then m1,m2, . . .  ,mr are said to be 
“ur-entangled.” That is, mi , where i = 1, 2, . . .  , r, are defined on the same 
object of the t-site S. For example, if two electrons e and e � are correlated, 
then the system at a common generalized time V can be described by an 
object (e(V ), e�(V )) (see Ref. 9 for the application of t-topos to the EPR-
type nonlocality). 

As already introduced earlier, we propose the generalized time V , 
which is an object in site S, as a more primitive notion of time than the 
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Fig. 4. Factorization of the morphism g. 

physical time t . If we defined the physical time as t = τ(V  ), where τ is the 
time presheaf, then time is of local nature in the sense that for any object 
V in S, τ(V  )  may exist only locally and may not be globally extended, just 
like a particle being a locally defined entity as compared to a wave which 
is an extended (nonlocal) entity. 

For the time presheaf τ , suppose τ(V  )  precedes τ(U)  and there exits a 
morphism g: V −→ U in S. “An electron e is emitted from the source, and 
then the electron hits the screen” can be phrased as follows in terms of 
t-topos: let e be the presheaf associated with the electron and let V be an 
object of S determining the particle ur-state of e when emitted. Let also U 
be an object of S determining the particle ur-state of e when the electron 
hits the screen.2 Namely, e(V ) and e(U) are observed and τ(V  )  precedes 
τ(U). In the  t-site S we have 

g: V −→ U. (7) 

g
Next define { V −→ U} be the set of all objects W and morphisms in S that 

g
factor g : V −→ U in S. That is, an element (α, W , β) of the set { V −→ U}
is given by the commutative diagram in S satisfying g = β ◦ α (see Fig. 4). 
Consequently, once an electron is emitted, the electron is in a wave ur-state 
{ e(W)} W∈ Ob(S) until it hits the screen, unless the electron is observed during 
a time interval between τ(V  )  and τ(U). 

2.6. Observations and Transfer of Information 

The definition of observation of a presheaf e by an observer or an 
instrument represented by another presheaf P is the following. There exists 
a nondiscrete category Cα, α ∈ � such that in Cα there is a morphism 

2For ur-states e(V ) at an initial time τ(V  )  and e(U) at a later time τ(U), there corre
spond quantum states | ψV � and | ψU � , respectively. If g is the morphisms from V to U 
in the t-site S, the presheaf e induces the evolution morphism e(g) from e(U) to e(V ). 
Corresponding to e(g) is a unitary operator UV → U such that | ψU � =  UV → U | ψV � . The 
evolution operator UV → U is similar to the time evolution operator in the usual quan
tum mechanical sense. 
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Fig. 5. Observation of e by P over V . 

SV : e(V ) −→ P(V  ) 	  (8) 

for some object V in site S when the electron e and the observer P inter
act. The morphism SV is a natural transformation over the generalized 
time period V , and the natural transformation is a morphism of functors 
(between e and P in our case). This definition of an observation implies 
that a wave ur-state { e(V )} V ∈ Ob(S), or  e(− ), must collapse to a particle 
ur-state by specifying an object V of S in order to be measured by the 
observer P . 

Under the same notations as in Sec. 2.5, now the question is how much 
information P can get about the ur-state e(U) by measuring e(V ). In order 
to answer this question, we first consider the commutative diagram shown 
in Fig. 5. The morphism e(g): e(U) −→ e(V ) is induced from Eq. (7) by 
the presheaf e. (Since a presheaf is a contravariant functor by definition, 

g	 e(g)
the direction of the arrow, V −→ U , is reversed, e(V ) ←− e(U), when the 
morphism g in S is carried over to the product category Cα by the α∈ � 
presheaf e.) 

We consider the image, Im(SV ), of the morphism SV to be informa
tion P received over V by observing e(V ). The image Im(SV ) is a subob
ject of P(V  )  which is influenced by e(V ). Then we have that 

Im(SV ) ⊃ Im(SV ◦ e(g)).	 (9) 

The composite morphism SV ◦ e(g) from e(U) to P(V  )  is an indirect 
observation of e(U) by P(V  ). The information from e(U) as represented 
by the image Im(SV ◦ e(g)) is never greater than Im(SV ). The inclusion 
“⊃ ” in Eq. (9) should be interpreted as: 

(1) In general, information	 about the past (ur-)state e(V ) does not 
provide the entire information of the future (ur-)state e(U). One 
can obtain only a partial knowledge of e(U) by measuring e(V ). 



Fig. 6. Observation of e by P over U . 

(2) Consider the commutative diagram in Fig. 6. Namely, when the 
future (ur-)state e(U) is measured, one does not get any informa
tion about the past (ur-)state e(V ). 

(See Note 1.7 in Ref. 6 relating Isham–Butterfield’s work(10–13) for how 
values may be assigned to physical quantities in quantum mechanics from 
the presheaves via Kochen-Specker theorem, especially 2.2 in Ref. 11 at the 
level of logic.) 

3. THE DOUBLE-SLIT INTERFERENCE IN TERMS OF T -TOPOS 

3.1. Factorization 

Suppose an electron is observed at the initial position (ti , xi) then 
later at (tf , xf ). No observation is made between xi and xf . The actual 
trajectory of the electron is unknown because its position was not mea
sured between the two positions. 

Let V be an object associated with the first observation of the elec
tron at (ti , xi) and U with the second observation at (tf , xf ). Then, 

ti = τ(V ),  xi = κ(V ),  and tf = τ(U),  xf = κ(U),  

where τ and κ are time and position presheaves. When the electron is 
localized by observation, that is when an object is specified, the time pres
heaf τ becomes the physically observable time t . The first observation pre
cedes the second one, which is written as τ(V ) < τ(U). 

Suppose the electron’s position is measured once somewhere on its 
way to the final position, and it is at (t1, x1). Let W1 be an object asso
ciated with the observation at (t1, x1) so that 



Fig. 7. An intermediate obser
vation between the final and 
initial positions causes a factor
ization of g and a localization 
of the electron. 

t1 = τ(W1), x1 = κ(W1) 

and the order of observations satisfies τ(V ) < τ(W1) < τ(U). A new com
mutative diagram corresponding to this series of observations is shown 
in Fig. 7 where α1 is the morphism from V to W1 and β1 is the mor
phism from W1 to U . In this case, g has been factored into g = β1 ◦ α1. 
If the electron is observed at a different location, say (t2, x2), then there 
exist an object W2, which is different from W1, such that t2 = τ(W2) and 
x2 = κ(W2). In general, for each intermediate observation of the electron 
between the initial position and the final position, there exists an object 
Wj in S and a factorization of g (see Fig. 8): 

g = βj ◦ αj . (10) 

The only restriction imposed on the intermediate position (tj , xj )=(τ (Wj ), 
κ(Wj )) is that the electron can physically be at that position and that the 
observation takes place after the initial observation but before the final 
observation, τ(V ) < τ(Wj ) < τ(U).3 

Furthermore, each intermediate morphism, αj or βj , can be factored 
as well. For example, if an observation is made between V and Wj and if 

3 For each factorization of g with an intermediate object Wj in t-site S, the electron pres
heaf e induces e(g) = e(βj ) ◦ e(αj ) where e(αj ) is an evolution morphism from e(Wj ) to 
e(V ) and e(βj ) is an evolution morphism from e(U) to e(Wj ). Corresponding to e(αj ) 
and e(βj ) are the evolution operators UV →Wj and UWj →U , respectively. The quantum 
state evolves from |ψV � to |ψWj � then to |ψU � by a sequence of the evolution operators: 
UV →U = UWj →U UV →Wj . If the electron is not observed between the source and the screen, 
that is, if no intermediate object Wj between V and U in S is chosen, then the morphism 
g may have various factorizations. Therefore, the corresponding evolution operator UV →U 

includes all allowed sequences of the evolution operators from the state |ψV � to |ψU �. 
Each sequence corresponds to a particular evolutionary path taken by the electron from 
the source to the screen. 



Fig. 8. The morphism g from V to U can be 
factored into many ways as long as the interme
diate position of the electron (τ (Wj ), κ(Wj )) is 
within the light cone of the preceding observed 
position. 

Yjk  is an object associated with this observation, then αj can be factored 
into αj = δjk  ◦ γjk  (see Fig. 9). 

Next, suppose a mask with two parallel slits is placed between the ini
tial position and the final position of the electron. The electron is allowed 
to travel from one side of the mask to the other side only through the slits 
A and B as shown in Fig. 1. The presence of the double-slit reduces the 
unrestricted commutative diagram in Fig. 8 to the fundamental commuta
tive diagram for the double-slit interference shown in Fig. 10. The objects 
WA and WB are associated with possible observations of the electron at 
the slits A and B, respectively. Each morphism αA, αB , βA, and βB can be 
further factored because there is no restriction in the position of the elec
tron anywhere between the source and the slit and between the slit and the 
screen. 

Although it is known with certainty that the electron does pass 
through the slits to reach the screen, which slit the electron actually passes 
through is unknown because no observation is made at the slit to detect 
its presence. Figure 10 shows that g can be factored into βA ◦ αA and 
βB ◦ αB . However, because no observation is made at the double-slit and 
because there is more than one object that corresponds to a possible 
position of the electron at the double-slit, the electron is in a nonlocal
ized state there and behaves as a wave ur-state according to t-topos (see 
Refs. 5 and 6). The object U for the electron presheaf on the screen is 
influenced by WA and WB at the slits. It is analogous to the superposi
tion principle for waves. In t-topos, when the electron is detected at the 
screen, it is in the particle ur-state e(U). But because the object is not 
specified at the double-slit, U and thus e(U) are dependent on both WA 
and WB . 



Fig. 9. Each morphism can be factored many 
times as more observations are made. 

Fig. 10. The most fundamental 
commutative diagram for an 
electron undergoing the double-
slit interference. The electron is 
not detected at either slit. 

If the electron is detected at the slit A with a setup like the one shown 
in Fig. 2, then the factorization of g must be from V to U via WA (i.e., 
g = βA ◦ αA) but not via WB , and the fundamental commutative diagram 
(Fig. 10) reduces to a simpler diagram with only one possible factorization 
of g as shown in Fig. 11, namely, the only upper triangle commutativity. 
This commutative diagram can also describe an experiment in which the 
slit B is completely closed. In such a case, all possible trajectories from 
the source to a point on the screen must go through the slit A. Then, the 

αA βAmorphism g factors into V −→ WA −→ U even though no actual obser
vation of the electron is made at the slit A. 

On the other hand, if the fired electron is not detected at the slit A, 
then it must have gone through the slit B assuming that the detector never 
misses the electron through the slit. Therefore, null detection of the elec
tron at the slit A implies that g factors into βB ◦ αB , and the fundamental 
commutative diagram reduces to the one shown in Fig. 12. 



Fig. 11. The commutative dia
gram corresponding to the exper
iment in which the electron is 
observed at the source, then at the 
slit A, and finally on the screen. 

Fig. 12. The commutative dia
gram corresponding to the exper
iment in which it is known with 
certainty that the electron passes 
through the slit B or that it does 
not pass through the slit A. 

It is possible that the detector at the slit A is not 100% reliable so 
that the electron could have evaded detection at the slit. In such a case, 
the commutative diagram for the experiment could be either Fig. 12 or 
Fig. 10. Also, if the wavelength of photon used to detect the position of 
the electron at the double-slit is in the same order as the slit spacing, then 
which slit the electron passes through is undetermined. Although an obser
vation is made in these cases, the associated object at the slit cannot be 
assigned. The fundamental diagram for the double-slit (Fig. 10) cannot be 
reduced to either single-slit diagrams (Fig. 11 or Fig. 12). Hence, the elec
tron remains in a wave ur-state at the double-slit. 

3.2. Single-slit Diffraction 

Even when one of the slits is closed or when the electron is detected 
at one of them, say slit A, the electron can still behave as a wave and pro
duce a diffraction pattern on the screen. The slit A has a finite width so 
it can be considered as consisting of several smaller subslits, indexed by 
�. Temporal-topos implies that for each subslit there exists an associated 



Fig. 13. The commutative diagram correspond
ing to the single-slit diffraction of an electron by 
a finite-width slit. The slit has been divided into 
several subslits, each with an associated object 
WA� and a factorization g = βA� ◦ αA�. 

object WA�. In other words, the commutative diagram (Fig. 11) can be 
drawn as a more detailed diagram (Fig. 13) showing the factorization g 
within the slit A. There is more than one way to factor g at the slit so 
that the electron is unlocalized within the width of the list. The object U 
is influenced by all intermediate objects {WA�} associated with the slit A. 
That means, the electron acts like a wave, and therefore it is diffracted by 
the single-slit. 

3.3. Statistical Ensemble 

What has been described above applies to one electron only. When 
an electron is fired from the source, there is an associated object V . The 
observation of this electron on the screen is associated to another object 
U . There is one morphism g from V to U . Here, g, V , and U are all asso
ciated with this electron. If another electron were fired, it would be asso
ciated with different objects, morphism, and presheaves. Several electrons 
may end up at the same final position on the screen xf after they are fired 

(1)one by one, but their associated objects are different. For example, let xf 
(2)be the final position of the first electron and x be the final position of f 

the second electron. Then, 

(1) (2)
x = κ(1)(U(1)), x = κ(2)(U(2)).f f 

κ(1)Notice that the position presheaf represents only the first electron 
and κ(2) represents only the second electron. Suppose both electrons are 

(1) (2)detected at the same position on the screen, i.e., x = x . This does not f f 



Fig. 14. The most fundamental commu
tative diagram for the ith electron in an 
ensemble of identically prepared electrons 
undergoing the double-slit interference. 

imply the objects U(1) and U(2) are identical in t-site. This is because U(1) 

is associated with the observation of the first electron and U(2) with the 
observation of the second electron. 

Next, consider similarly prepared, identical electrons being fired repea
tedly from the source. The ith electron in this ensemble is associated with 
objects V (i), U(i), and morphism g(i). The commutative diagram for the 
ith electron is shown in Fig. 14. This diagram belongs to only the ith 
electron. For the ensemble of N identical electrons, a set of final vertical 

(1) (2) (N) positions on the screen can be formed, {x , x , . . .  , x }. If the elecf f f 
trons are not detected at the double-slit, the statistical distribution of the 
final positions should exhibit the double-slit interference pattern. This is 
because each electron is in the wave ur-state between V (i) and U(i) and 

(i) (i) because U(i) is influenced by W and W at the screen. A B 
On the other hand, if the electrons are detected at the double-slit, and 

which slit (either A or B) each electron passes through is known with cer
(1) (2) (N) tainty, then the set of the final positions {x , x , . . .  , x } becomes a f f f 

disjoint union of two sets, one associated with the electrons with the com
mutative diagrams similar to Fig. 11 and the other associated with the 
electrons with the diagrams similar to Fig. 12. Each of the final position 
subsets exhibits a statistical distribution of a single-slit diffraction. 

4. DISCUSSION 

As shown in this paper that t-topos can be very useful in describing 
mathematical structures for the foundation of physical particles in quan



tum mechanics. In the language of t-topos, an electron is represented by 
a presheaf e. Contradictory particle-like properties and wave-like proper
ties of electron are consistent with the model based on a presheaf together 
with a choice of an object in the t-site. When the electron is actually 
observed, an object V in the site S is selected, and the electron is localized 
as e = e(V ). If an object is not specified, in other words, no observation 
is made, the electron remains in the wave ur-state e(−). 

In the electron double-slit experiment, the electron remains in the 
wave ur-state if both slits are open and no observation is made at the slit 
because there are more than one choice for the object in the t-site. This 
type of experiment is represented by the fundamental commutative dia
gram in Fig. 10. The particle ur-state of the electron on the screen e(U) 
is dependent on the factorization of the morphism from V to U . For the 
double-slit experiment, there are two objects WA and WB associated the 
slits, and both of them affect U . Closing one of the slits or detecting the 
electron at the slit selects a particular object, and thus the electron is in 
a localized particle ur-state at the slit. The fundamental commutative dia
gram reduces to simpler diagrams (Fig. 11 or Fig. 12). The double-slit 
interference pattern disappears in this case because e(U) is dependent on 
only one intermediate object (either WA or WB , but not both). 

In this paper, we did not presheafify physically observable quantities 
other than time and space, but we could have introduce presheaves associ
ated with energy and momentum of an electron at the microcosm (quan
tum) level C1. Some presheaves may be coupled together. For example, the 
space and momentum presheaves form a pair (κ, π) acting as one object 
of the t-topos. This may allow us to interpret the uncertainty principle 
from the t-topos point of view. Spin too can be presheafified. When an 
object V in the t-site is specified, σ(V  )  gives us a discrete number for the 
spin of the electron. If we do not specify the object, then we have σ(−). 

Also missing is dynamics of electron in terms of t-topos as it trav
els from the initial position with associate object V to the final position 
with object U . These details will be addressed in our second paper on 
t-topos and the electron double-slit interference. It will be shown that how 
the interference patter on the screen changes, as wavelength, slit width or 
slit spacing increases or decreases, is consistent with properties of presheaf. 
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