22 research outputs found

    Quality control of photosystem II: direct imaging of the changes in the thylakoid structure and distribution of FtsH proteases in spinach chloroplasts under light stress

    Get PDF
     Under light stress, the reaction center-binding protein D1 of PSII is photo-oxidatively damaged and removed from PSII complexes by proteases located in the chloroplast. A protease considered to be responsible for degradation of the damaged D1 protein is the metalloprotease FtsH. We showed previously that the active hexameric FtsH protease is abundant at the grana margin and the grana end membranes, and this homo-complex removes the photodamaged D1 protein in the grana. Here, we showed a change in the distribution of FtsH in spinach thylakoids during excessive illumination by transmission electron microscopy (TEM) and immunogold labeling of FtsH. The change in distribution of the protease was accompanied by structural changes to the thylakoids, which we detected using spinach leaves by TEM after chemical fixation of the samples. Quantitative analyses showed several characteristic changes in the structure of the thylakoids, including shrinkage of the grana, outward bending of the marginal portions of the thylakoids and an increase in the height of the grana stacks under excessive illumination. The increase in the height of the grana stacks may include swelling of the thylakoids and an increase in the partition gaps between the thylakoids. These data strongly suggest that excessive illumination induces partial unstacking of the thylakoids, which enables FtsH to access easily the photodamaged D1 protein. Finally three-dimensional tomography of the grana was recorded to observe the effect of light stress on the overall structure of the thylakoids

    Variations of fluid pressure within the subducting oceanic crust and slow earthquakes

    Get PDF
    We show fine‐scale variations of seismic velocities and converted teleseismic waves that reveal the presence of zones of high‐pressure fluids released by progressive metamorphic dehydration reactions in the subducting Philippine Sea plate in Tokai district, Japan. These zones have a strong correlation with the distribution of slow earthquakes, including long-term slow slip (LTSS) and low-frequency earthquakes (LFEs). Overpressured fluids in the LTSS region appear to be trapped within the oceanic crust by an impermeable cap rock in the fore-arc, and impede intraslab earthquakes therein. In contrast, fluid pressures are reduced in the LFE zone, which is deeper than the centroid of the LTSS, because there fluids are able to infiltrate into the narrow corner of the mantle wedge, leading to mantle serpentinization. The combination of fluids released from the subducting oceanic crust with heterogeneous fluid transport properties in the hanging wall generates variations of fluid pressures along the downgoing plate boundary, which in turn control the occurrence of slow earthquakes

    The 2018 Hokkaido Eastern Iburi earthquake (M-JMA=6.7) was triggered by a strike-slip faulting in a stepover segment: insights from the aftershock distribution and the focal mechanism solution of the main shock

    Get PDF
    The Hokkaido Eastern Iburi earthquake (MJMA = 6.7) occurred on September 6, 2018, in the Hokkaido corner region where the Kurile and northeastern Japan island arcs meet. We relocated aftershocks of this intraplate earthquake immediately after the main shock by using data from a permanent local seismic network and found that aftershock depths were concentrated from 20 to 40 km, which is extraordinarily deep compared with other shallow intraplate earthquakes in the inland area of Honshu and Kyushu, Japan. Further, we found that the aftershock area consists of three segments. The first segment is located in the northern part of the aftershock area, the second segment lies in the southern part, and the third segment forms a stepover between the other two segments. The hypocenter of the main shock, from which the rupture initiated, is located on the stepover segment. The centroid moment tensor solution for the main shock indicates a reverse faulting, whereas the focal mechanism solution determined by using the first-motion polarity of the P wave indicates strike-slip faulting. To explain this discrepancy qualitatively, we present a model in which the rupture started as a small strike-slip fault in the stepover segment of the aftershock area, followed by two large reverse faulting ruptures in the northern and southern segments
    corecore