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EXPRESS LETTER

The 2018 Hokkaido Eastern Iburi earthquake 
(MJMA = 6.7) was triggered by a strike-slip 
faulting in a stepover segment: insights 
from the aftershock distribution and the focal 
mechanism solution of the main shock
Kei Katsumata1* , Masayoshi Ichiyanagi1, Mako Ohzono1, Hiroshi Aoyama1, Ryo Tanaka1, Masamitsu Takada1, 
Teruhiro Yamaguchi1, Kazumi Okada1, Hiroaki Takahashi1, Shin’ichi Sakai2, Satoshi Matsumoto3, 
Tomomi Okada4, Toru Matsuzawa4, Shuichiro Hirano5, Toshiko Terakawa6, Shinichiro Horikawa6, 
Masahiro Kosuga7, Hiroshi Katao8, Yoshihisa Iio8, Airi Nagaoka8, Noriko Tsumura9, Tomotake Ueno10 

and the Group for the Aftershock Observations of the 2018 Hokkaido Eastern Iburi Earthquake

Abstract 

The Hokkaido Eastern Iburi earthquake (MJMA = 6.7) occurred on September 6, 2018, in the Hokkaido corner region 
where the Kurile and northeastern Japan island arcs meet. We relocated aftershocks of this intraplate earthquake 
immediately after the main shock by using data from a permanent local seismic network and found that aftershock 
depths were concentrated from 20 to 40 km, which is extraordinarily deep compared with other shallow intraplate 
earthquakes in the inland area of Honshu and Kyushu, Japan. Further, we found that the aftershock area consists of 
three segments. The first segment is located in the northern part of the aftershock area, the second segment lies in 
the southern part, and the third segment forms a stepover between the other two segments. The hypocenter of the 
main shock, from which the rupture initiated, is located on the stepover segment. The centroid moment tensor solu-
tion for the main shock indicates a reverse faulting, whereas the focal mechanism solution determined by using the 
first-motion polarity of the P wave indicates strike-slip faulting. To explain this discrepancy qualitatively, we present a 
model in which the rupture started as a small strike-slip fault in the stepover segment of the aftershock area, followed 
by two large reverse faulting ruptures in the northern and southern segments.

Keywords: The Hokkaido Eastern Iburi earthquake, Strike-slip fault, Reverse fault, Aftershock distribution, Focal 
mechanism solution, Local seismic network, Stepover segment
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Introduction
The Hokkaido Eastern Iburi earthquake occurred on 
September 6, 2018, and the parameters of the hypo-
center given by the Japan Meteorological Agency 
(JMA) are as follows: origin time = 03:07:59.3 JST, 

epicenter = (42.691°N, 142.007°E), depth = 37.0 km, and 
MJMA = 6.7. This earthquake is located in the Hokkaido 
corner region, where the northern Japan island arcs 
connect to the Kurile Islands. The Pacific plate sub-
ducts beneath Hokkaido Island on the North American 
or the Okhotsk Sea Plate in this region (e.g., Takahashi 
et  al. 1999; Katsumata et  al. 2002). In addition, the 
Kurile island arc is moving toward the southwest and 
colliding with the northeastern Japan arc (e.g., Kimura 
1996). This region is called the arc–arc-type Hidaka 
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collision zone (HCZ). The depth to the upper surface 
of the subducting Pacific plate is approximately 100 km 
around the focal area (Katsumata et al. 2003); therefore, 
this earthquake obviously occurred in the North Amer-
ican plate or the Okhotsk Sea plate, i.e., this earthquake 
was a shallow intraplate earthquake in the inland area 
of Japan.

The first purpose of this study is to re-evaluate the 
depth and distribution of the main shock and after-
shocks accurately. The hypocenters of main shocks are 
usually shallower than 20  km for shallow intraplate 
earthquakes in the inland area of Japan (Omuralieva 
et  al. 2012), whereas the depth of this sequence was 
obviously deeper than 20 km according to the prelimi-
nary report from the JMA. Therefore, we relocated the 
hypocenters of the main shock and aftershocks in this 
study by considering a local complex velocity structure 
of the crust.

The second purpose of this study is to investigate the 
reason for the mismatch between the centroid moment 
tensor (CMT) solution and the focal mechanism solu-
tion determined by using the first-motion polarities 
of P waves at individual stations. The CMT solutions 
of the main shock were reported by four groups: JMA 
(2018a), the National Research Institute for Earth Sci-
ence and Disaster Resilience (NIED 2018a), the United 
States Geological Survey (USGS 2018), and the Global 
CMT project (Dziewonski et  al. 1981; Ekström et  al. 
2012). All CMT solutions of this earthquake are con-
sistent in showing that the earthquake resulted mainly 
from reverse faulting. However, the focal mechanism 
of this earthquake was mainly strike-slip faulting (JMA 
2018b; NIED 2018b). We estimated the focal mecha-
nism solution by adding data from seismic stations in 
the focal area and investigated a model to explain quali-
tatively the discrepancy between the CMT solutions 
and the focal mechanisms by referring to the relocated 
aftershock distribution.

Data
We used the arrival times of P and S waves from 35 per-
manent seismic stations maintained by Hokkaido Uni-
versity, JMA, and NIED (Fig. 1). Each station consists of 
a short-period seismograph with three components on 
the ground surface or in a vertical borehole. All wave-
form data are telemetered continuously in real time, 
and preliminary hypocenters are determined automati-
cally. In total, 459 earthquakes were detected and located 
for ∼ 2  days between 2018-09-06 03:00 and 2018-09-07 
23:59, and we used the arrival times from these earth-
quakes in the following analyses. All waveform data were 
examined carefully by visual inspection, and all arrival 
times were read manually by a well-trained person. The 

accuracies for most P and S arrival times are considered 
to be 0.05–0.1  s and 0.1–0.2  s, respectively. An elec-
trical power loss occurred during this period, and the 
waveform data were not recorded for several hours at 
some stations. We deployed 25 temporary seismic sta-
tions in the focal area immediately after the main shock 
and observed aftershocks for approximately 2  months. 
Although we successfully recorded many earthquakes, 
we used no data from the temporary seismic stations in 
this study.

Analyses
To relocate hypocenters, we first determine hypocent-
ers of earthquakes with an assumption of a 1-D veloc-
ity structure using the hypomh algorithm (Hirata and 
Matsu’ura 1987). We then used the hypocenters as the 
initial locations of earthquakes and carried out relative 
hypocenter relocation using double-difference tomog-
raphy (tomoDD) (Zhang and Thurber 2003) with a fixed 
3-D velocity structure. The initial locations of hypocent-
ers were calculated with an assumption of a 1-D struc-
ture for the velocity of the P wave (Vp) based on Iwasaki 
et al. (2004) as shown in Fig. 1c: 3.2 km/s at 0.0 km depth, 
4.8  km/s at 3.0  km, 5.78  km/s at 7.0  km, 4.65  km/s at 
10.0 km, 6.95 km/s at 22.5 km, 7.2 km/s at 35.0 km, and 
8.06 km/s at 50.0 km. The velocity of the S wave (Vs) was 
calculated at each depth as Vp/1.73 with the assump-
tion that the Vp/Vs ratio is 1.73. Recently several authors 
presented a 3-D tomographic model of Vp and Vs in this 
region (Katsumata et  al. 2006; Yoshida et  al. 2007; Kita 
et  al. 2012; Shiina et  al. 2018); thus, we assumed a 3-D 
velocity structure as shown in Additional file 1. The study 
area was divided into grids every 10 km in both the lon-
gitude and latitude directions on each plane at depths of 
0, 5, 10, 22.5, 35, and 50 km. Values of Vp and the Vp/Vs 
ratio at depths shallower than 10  km were based on 
Yoshida et  al. (2007), and those at depths equal to and 
deeper than 10 km were based on Shiina et al. (2018).

To support the results obtained by the method 
described above, we determined the hypocenters by 
using a homogeneous station method. Seven seis-
mic stations were selected among the 35 stations, and 
their epicentral distances from the main shock ranged 
from 14 to 38  km. Seventy aftershocks were relocated 
for the 4  h immediately after the main shock between 
2018-09-06 03:15 and 07:18. The arrival times of both P 
and S waves were picked at all seven stations for all 70 
aftershocks; thus, hypocenters have no variations due 
to differences in the combination of seismic stations. 
We used the hypomh program (Hirata and Matsu’ura 
1987) to determine hypocenters, and the 1-D Vp struc-
ture was assumed to be as follows: 2.6 km/s at a depth 
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of 0 km, 3.4 km/s at a depth of 3 km, and 5.8 km/s at a 
depth of 7 km. These values are based on Iwasaki et al. 
(2004). The Vp structure at depths deeper than 7  km 
was assumed to be as follows: V1 km/s at a depth of 
(7 + H) km, V2 km/s at a depth of (7 + H) + 5  km, and 
9.0  km/s at a depth of (7 + H) + 5+370  km. The four 
parameters, V1, V2, H, and the Vp/Vs ratio, were deter-
mined using a grid search technique. V1, V2, H, and 
the Vp/Vs ratio ranged from 5.9 to 7.9 km/s with every 
0.1 km/s, from V1 + 0.1 to 8.5 km/s with every 0.1 km/s, 
from 1 to 50 km with every 1 km, and from 1.60 to 1.80 
with every 0.01, respectively. The optimal solution for 
the four parameters was determined under the condi-
tion that the residual of the 70 aftershocks reaches a 
minimum.

To determine the focal mechanism solution of the 
main shock, we used the HASH method (Hardebeck and 
Shearer 2002), which is a grid search program using the 
first-motion polarity of the P wave. P wave first-motion 
polarities were read manually by careful inspection at 
53 seismic stations with epicentral distances from 9 to 
114 km. No amplitude data were used.

Results
In total, 459 earthquakes were located for ∼ 2  days 
between 2018-09-06 03:00 and 2018-09-07 23:59 (Fig.  2 
and Additional file  2). We located the epicenter of the 

main shock at (42.662°N, 142.011°E), and the depth was 
40.5  km. We found that the aftershock area extended 
25  km horizontally, approximately in the N–S direc-
tion, and that 95% of the hypocenters were distributed 
at depths from 20 to 40  km. The location errors were 
approximately 0.2 km in both the horizontal and vertical 
directions for the relocated main shock and aftershocks. 
These small errors indicated that the reading error 
depending on the ground noise level was very small and 
that the station coverage was very good. Zero, 14, 50, 387, 
and 8 hypocenters were located shallower than 10  km, 
10 to 20 km, 20 to 30 km, 30 to 40 km, and 40 to 50 km, 
respectively. Therefore, the aftershocks of the 2018 Hok-
kaido Eastern Iburi earthquake occurred at the obviously 
greater depths than other intraplate earthquakes in the 
inland area of Honshu and Kyushu, Japan.

We also found that the aftershock area consists of three 
segments: the northern, the southern, and the stepover 
segments. Taking location errors into account, possi-
ble fault zones are shown in each vertical cross section 
in Fig.  3. The northern segment extends horizontally 
15  km in the N–S direction and dips ∼ 60° to the east. 
The southern segment extends horizontally 10 km in the 
NNE-SSW direction and dips ∼ 65° to the ESE. The near-
N–S horizontal trends and the dip angles of these two 
segments are consistent with one of the nodal planes of 
the CMT solutions, indicating that the main shock was 
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Fig. 1 a Seismic stations are used in this study. Squares and circles are stations maintained by Hokkaido University and JMA, respectively. Triangles 
are the Hi-net or F-net stations maintained by NIED. A red star marks the epicenter of the 2018 Hokkaido Eastern Iburi earthquake located by JMA. 
Thin lines indicate surface traces of active faults (Research Group for Active Faults in Japan 1991). b 1. JMA and 2. USGS are the CMT solutions of 
the main shock determined by JMA (2018a) and USGS (2018), respectively. 3. JMA and 4. NIED are the focal mechanism solutions of the main shock 
by using the first-motion polarities of the P wave determined by JMA (2018b) and NIED (2018b), respectively. c P wave velocity structure assumed 
for calculating the initial hypocenters before the hypocenter determination using a 3-D velocity structure. d Optimal P wave velocity structure 
obtained from the homogeneous station method
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mainly due to reverse thrust faulting. Both the horizon-
tal lengths and the dip angles are almost the same for the 
northern and southern segments, whereas the horizon-
tal direction of the southern segment is rotated slightly 
clockwise relative to the northern segment. Moreover, a 
clear horizontal offset or stepover of ∼ 5 km is observed 
between the two segments. This stepover segment 
extends horizontally 5  km in the WNW-ESE direction 
and seems to connect the southern and northern seg-
ments. The hypocenter of the main shock, i.e., the ini-
tiation point of the rupture, is located in the stepover 
segment.

In the case of the homogeneous station method, the 
optimal solutions for the four parameters are as follows 
(Fig.  1d): V1 = 5.9  km/s, V2 = 7.1  km/s, H = 18  km, and 
Vp/Vs = 1.70. By using the optimal 1-D velocity structure, 
we located the epicenter of the main shock at (42.681°N, 
142.004°E), and the depth was 34.3 km. The spatial pat-
terns described above were also obtained in the homo-
geneous station method analysis, as shown in Fig. 2. The 
different analyses presented similar results. Therefore, 
the two noteworthy spatial patterns obtained in this 
study, i.e., (1) the deep distribution of aftershocks and (2) 
the aftershock area consisting of three segments, seemed 
to be reliable.
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We obtained the focal mechanism solution of the main 
shock: nodal plane 1 (strike, dip, rake) = (177°, 73°, 143°) 
and nodal plane 2 (279°, 54°, 20°) (Fig. 4). As the station 
coverage was good and the misfit was small, the quality 
of solution was estimated to be A (good) by the HASH 
program. The solution in this study indicated strike-slip 
faulting with a small component of reverse faulting and 
did not match the CMT solutions. On the other hand, the 
strike of nodal plane 2 was estimated in the WNW-ESE 
direction, which was consistent with the direction of the 
aftershock distribution in the stepover segment.

Discussion
Extraordinarily deep aftershock distribution
In this study, we relocated the main shock and the after-
shocks of the 2018 Hokkaido Eastern Iburi earthquake 

and found that almost all earthquakes were concentrated 
at depths from 20 to 40 km. This range is extraordinar-
ily deeper than other intraplate earthquakes in the inland 
area of Honshu and Kyushu, Japan. Table  S1 in Addi-
tional file  3 shows that in the case of the 1995 Hyogo-
ken–Nanbu earthquake (MJMA 7.2), the depth range of 
the aftershock area is from 0 to 20 km (Hirata et al. 1996); 
the 2000 Western Tottori (MJMA 7.3), 2–13 km (Shibutani 
et  al. 2005); the 2004 mid-Niigata (MJMA 6.8), 2–13  km 
(Okada et  al. 2005); the 2005 West Off Fukuoka (MJMA 
7.0), 2–16 km (Shimizu et al. 2006); the 2007 Chuetsu-oki 
(MJMA 6.8), 5–22 km (Nakahigashi et al. 2012); the 2007 
Noto Hanto (MJMA 6.9), 1–13 km (Sakai et al. 2008); the 
2008 Iwate-Miyagi Nairiku (MJMA 7.2), 2–8  km (Okada 
et  al. 2012); the 2011 Iwaki (MJMA 7.0), 2–15  km (Kato 
et  al. 2013); the 2016 Kumamoto (MJMA 7.3), 2–18  km 
(Shito et  al. 2017); and the 2016 Tottori (MJMA 6.6), 
5–15 km (Ross et al. 2018). On the other hand, the after-
shock area is deep in and around the HCZ, Hokkaido. 
For example, in the cases of the 1970 MJMA = 6.7 Hidaka 
earthquake and the 1982 MJMA = 7.1 Urakawa-oki earth-
quake, the aftershocks were located at depths from 20 to 
30 km and from 18 to 35 km, respectively (Moriya 1972; 
Moriya et  al. 1983). The 2018 Hokkaido Eastern Iburi 
earthquake is also located in the HCZ and its deep distri-
bution of aftershocks is very similar to those of previous 
earthquakes in this region.

The hypocenter of the 2018 earthquake is located near 
the bottom of the aftershock area. This fact is consistent 
with a model in which the stress accumulates on a seis-
mic fault in the upper crust due to a weak zone in the 
lower crust (Iio et al. 2002). The P and S wave velocities, 
the resistivity, and the pore pressure in and around the 
aftershock area provide clues for further discussion.

A model of the fault ruptures during the main shock
Here, we first summarize the results: (1) the hypo-
center of the main shock was located in the stepover 
segment in the central part of the aftershock area and 
(2) the focal mechanism solution of the main shock 
is consistent with the aftershock distribution in the 
stepover segment. Based on these results, we present 
a model in which the fault rupture during the main 
shock started at the stepover segment in a small area, 
possibly 5 × 5  km2 and M ∼ 5, with left-lateral strike-
slip faulting, and immediately afterward, large rup-
tures, possibly with fault areas of 10 × 10  km2 and 
M ∼ 6.4 each, were triggered in the northern and 
southern segments with reverse faulting (Fig. 5). Nodal 
plane 2 of the focal mechanism obtained in this study 
probably corresponds to the first strike-slip fault-
ing, which dips toward the NNE; thus, the hanging 
wall of this fault plane moved westward and upward. 
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Qualitatively, these motions possibly promoted reverse 
faulting in the northern and southern segments. To 
test the fault model, the Coulomb failure stress change 
(ΔCFS) in and around the focal area was calculated 
(see Additional file  4). In the case of the 2007 Noto 
Hanto earthquake, Sakai et  al. (2008) also proposed 
a model in which small strike-slip faulting occurred 
first, and 0.6  s later, the main rupture with reverse 
faulting was triggered by the small strike-slip fault-
ing. The model presented in this study should be sup-
ported by other data and analyses, including far-field 
body waves, near-field strong motion records, global 

navigation satellite system (GNSS), and interferomet-
ric synthetic aperture radar (InSAR).

The rupture process including a stepover segment is 
well known in the case of strike-slip faulting, e.g., the 
1992 Mw 7.3 Landers earthquake (Sieh et al. 1993) and 
the 2016 Mw 7.8 Kaikoura, New Zealand earthquake 
(Hamling et al. 2017). Many numerical simulations and 
theoretical studies on the physical mechanism of rup-
ture propagation consider a stepover segment between 
strike-slip faults (e.g., Bai and Ampuero 2017). How-
ever, little is known about the rupture process with a 
stepover segment in the case of reverse thrust faulting. 
In this sense, the 2018 Hokkaido Eastern Iburi earth-
quake is an unusual earthquake.

Conclusions
We relocated hypocenters of the main shock and after-
shocks immediately after the 2018 Hokkaido Eastern 
Iburi earthquake (MJMA = 6.7) by using two different 
methods: the hypoDD method with an assumed 3-D 
velocity structure and a homogeneous station method. 
As a result, we found that the main shock was located 
obviously deeper than 30 km, and almost all aftershocks 
were located at depths between 20 and 40  km. These 
depths are extraordinarily deeper than those for other 
intraplate earthquakes in the inland area of Japan. The 
CMT solution of the main shock is inconsistent with the 
focal mechanism solution determined by the first-motion 
polarities of the P wave. This discrepancy is probably 
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Fig. 4 a Focal mechanism solution of the 2018 Hokkaido Eastern Iburi earthquake. The diagram is an equal area projection on the lower 
hemisphere of the focal sphere. Solid and open circles indicate compressional and dilatational first motions, respectively. The black lines indicate the 
preferred nodal planes, whereas the red lines show 50 mechanisms chosen from the set of acceptable solutions. b Geographical distribution of the 
polarity data. A cross indicates the epicenter of the main shock

Fig. 5 A schematic illustration of a fault model ruptured by the 
2018 Hokkaido Eastern Iburi earthquake. The view point is located 
northeast of the focal area. Arrows indicate the motion of the 
hanging wall of individual faults
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explained by the model proposed in this study in which 
the rupture started as a small left-lateral strike-slip fault 
in the stepover segment, and afterward, two large reverse 
faults were triggered in the northern and southern 
segments.

Additional files

Additional file 1. 3D P wave velocity structure.

Additional file 2. List of hypocenters in Fig. 2a, b, and c.

Additional file 3: Table S1.  Depth range of aftershock area.

Additional file 4. A calculation of the Coulomb stress change.
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