580 research outputs found

    Real time degradation monitoring system for high power IGBT module under power cycling test

    Get PDF
    A “real time” monitoring system which enables to observe internal degradation process to failure of power semiconductors under power cycling test is proposed. The system was realized by combining a scanning acoustic tomography (SAT/SAM), power stress controlling, device cooling, water jet system and chip temperature monitoring. Two contradictory problems, namely, electrically wiring for power cycling and waterproof of device for SAT imaging were compatible with each other by experimental setup with an original water tank. Self-heating of power devices was supressed by controlling temperature of water which is couplant of ultrasonic wave for the SAT. A demonstration of this system was performed by using an IGBT module which maximum rating of collector current was 400 A (DC).24th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis. Schedule, September 30-October 4, 2013, Venue, Arcachon, Franc

    Failure Analysis of Power Devices Based on Real-Time Monitoring

    Get PDF
    The aim is to provide failure analysis of power devices based on real-time monitoring. The real-time monitoring provides a time-domain data related to a failure mechanism. The data includes important information about primary failure, which is often lost by conventional post-defect failure analysis. Our system monitors interfaces of component material inside the device by scanning acoustic tomography (SAT) under a power cycling test in addition to electrical and thermal condition of the device. A precursor of the failure in an early stage was indicated by the interface image much earlier than a thermal and an electrical technique. Feature identification and extraction from a series of image data by image processing efficiently pointed out the damaged site before the failure was occurred.ESREF 2015, 26th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, Oct 5-9, 2015, Centre de Congrès Pierre Baudis, Toulouse, Franc

    Micro PCB Rogowski coil for current monitoring and protection of high voltage power modules

    Get PDF
    We have developed a printed circuit board Rogowski coil for monitoring of current and protection of high-voltage power modules and packages. It is small, thin, and inexpensive current sensor and is almost the ideal Rogowski coil because of its fishbone pattern. For noise reduction under high-voltage/-current conditions in a module, shield layers and coaxial connector are employed. In addition, a new, fast simulation tool was developed to optimize the main coil pattern for realization of arbitrary printed circuit board geometry in specific, limited spaces

    An Electronic Model for CoO2CoO_2 layer based systems: Chiral RVB metal and Superconductivity

    Get PDF
    Takada et al. have reported superconductivity in layered Na__x CoO_2.yH_2O (Tc5KT_c \approx5 K) and more recently Wen et al. in AxCoO2+δA_xCoO_{2+\delta} (A=Na,KA = Na,K)(\tc 31K\approx~31 K). We model a reference neutral \cob layer as an orbitally non-degenerate spin-\half antiferromagnetic Mott insulator on a triangular lattice and Na__x CoO_2.yH_2O and AxCoO2+δA_xCoO_{2+\delta} as electron doped Mott insulators described by a t-J model. It is suggested that at optimal doping chiral spin fluctuations enhanced by the dopant dynamics leads to a d-wave superconducting state. A chiral RVB metal, a PT violating state with condensed RVB gauge fields, with a possible weak ferromagnetism and low temperature p-wave superconductivity are also suggested at higher dopings.Comment: 4 pages of LaTex file, 6 figures in eps files. Typos and minor corrections mad

    New Power Module Integrating Output Current Measurement Function

    Get PDF
    This paper proposes a new power module concept that integrates output current measurement function to make inverters compact. The current measurement function is realized by tiny printed-circuit-board (PCB) Rogowski coils. The PCB Rogowski coil picks up a switching current flowing through an IGBT chip, and then a combination of a digital circuit based on a field-programmable-gate-array (FPGA) and an integrator circuit reproduces the output current of the inverter from the switching current. A major concern of the new power module is the effect of reverse recovery current of free-wheeling diodes because the reverse recovery current is superimposed on the switching current. This paper proposes a mitigating method of the reverse recovery current.2017 29th International Symposium on Power Semiconductor Devices and IC\u27s (ISPSD), May 28 2017-June 1 2017, Sapporo, Japa

    Structure Oriented Compact Model for Advanced Trench IGBTs without Fitting Parameters for Extreme Condition: Part II

    Get PDF
    Compact model for expressing turn-off waveform for advanced trench gate IGBTs is proposed even under high current density condition. The model is analytically formulated only with device structure parameters so that no fitting parameters are required. The validity of the model is confirmed with TCAD simulation for 1.2 kV to 6.5 kV class IGBTs. The proposed turn-off model is sufficiently accurate to calculate trade-off curve between turn-off loss and saturation collector voltage under extremely high current conduction, so that the model can be used for system design with the advanced trench gate IGBTs.ESREF 2014, 25th EUROPEAN SYMPOSIUM ON RELIABILITY OF ELECTRON DEVICES,FAILURE PHYSICS AND ANALYSIS, Sep 29–Oct 3, 2014, Technische Universität Berli

    16-channnel Micro Magnetic Flux Sensor Array for IGBT Current Distribution Measurement

    Get PDF
    Current crowding of IGBT and power diode in a chip or among chips is a barrier to the realization of highly-reliable power module and power electronics system. Current crowding occurs because of the parasitic inductance, difference of chip characteristics or temperature imbalance among chips. Although current crowding among IGBT or power diode chips has been analysed on numerical simulations, no sensor with sufficiently high special resolution and fast measurement time has yet been demonstrated. Therefore, the author developed and demonstrated 16-channel flat sensitivity sensor array for IGBT current distribution measurement. The sensor array consists of tiny-scale film sensors with analog amps and shield case against noise. The array and digital calibration method will be applied for reliability analysis, designing and screening of IGBT modules.ESREF 2015, 26th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, Oct 5-9, 2015, Centre de Congrès Pierre Baudis, Toulouse, Franc

    High-throughput and Full Automatic DBC-Module Screening Tester for High Power IGBT

    Get PDF
    We developed a high-throughput screening tester for DBC-module of IGBT. The tester realizes a new screening test with current distribution in addition to a conventional switching test. It consists of a power circuit, a replaceable test head, sensor array module and digitizer with LabVIEW program. Therefore, all kinds of DBC-modules can be screened by switching the test head. The tester acquires magnetic field signals and displays GO/NOGO judgment automatically after digital calibration and signal processing in 10 seconds. It is expected to be applied for screening in a production line and analysis in order to prevent the failure of power modules.ESREF 2015, 26th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, Oct 5-9, 2015, Centre de Congrès Pierre Baudis, Toulouse, Franc

    Semiclassical theory of electron drag in strong magnetic fields

    Full text link
    We present a semiclassical theory for electron drag between two parallel two-dimensional electron systems in a strong magnetic field, which provides a transparent picture of the most salient qualitative features of anomalous drag phenomena observed in recent experiments, especially the striking sign reversal of drag at mismatched densities. The sign of the drag is determined by the curvature of the effective dispersion relation obeyed by the drift motion of the electrons in a smooth disorder potential. Localization plays a role in explaining activated low temperature behavior, but is not crucial for anomalous drag per se.Comment: 10 page

    A fully digital feedback control of gate driver for current balancing of parallel connected power devices

    Get PDF
    Parallel connected power devices such as Insulated Gate Bipolar Transistors (IGBTs) can be used to realize a system with higher current and higher power rating. However, the operation of parallel connected IGBTs is prone to unbalancing due to variation in parameters of the semiconductor devices and asymmetric parallel system. In this paper, feedback control is proposed for peak overshoot minimization as well as current balancing of parallel connected IGBTs. A fully digital feedback control (DFC) is implemented using the universal clock for balanced operation of the two parallel connected IGBTs
    corecore