201 research outputs found
Driven Dynamics: A Probable Photodriven Frenkel-Kontorova Model
In this study, we examine the dynamics of a one-dimensional Frenkel-Kontorova
chain consisting of nanosize clusters (the ''particles'') and photochromic
molecules (the ''bonds''), and being subjected to a periodic substrate
potential. Whether the whole chain should be running or be locked depends on
both the frequency and the wavelength of the light (keeping the other
parameters fixed), as observed through numerical simulation. In the locked
state, the particles are bound at the bottom of the external potential and
vibrate backwards and forwards at a constant amplitude. In the running state,
the initially fed energy is transformed into directed motion as a whole. It is
of interest to note that the driving energy is introduced to the system by the
irradiation of light, and the driven mechanism is based on the dynamical
competition between the inherent lengths of the moving object (the chain) and
the supporting carrier (the isotropic surface). However, the most important is
that the light-induced conformational changes of the chromophore lead to the
time-and-space dependence of the rest lengths of the bonds.Comment: 4 pages,5 figure
CrO2: a self-doped double exchange ferromagnet
Band structure calculations of CrO2 carried out in the LSDA+U approach reveal
a clear picture of the physics behind the metallic ferromagnetic properties.
Arguments are presented that the metallic ferromagnetic oxide CrO2 belongs to a
class of materials in which magnetic ordering exists due to double exchange (in
this respect CrO2 turns out to be similar to the CMR manganates). It is
concluded that CrO2 has small or even negative charge transfer gap which can
result in self-doping. Certain experiments to check the proposed picture are
suggested.Comment: 4 pages, 4 Figure
Transport, optical and electronic properties of the half metal CrO2
The electronic structure of CrO_2 is critically discussed in terms of the
relation of existing experimental data and well converged LSDA and GGA
calculations of the electronic structure and transport properties of this half
metal magnet, with a particular emphasis on optical properties. We find only
moderate manifestations of many body effects. Renormalization of the density of
states is not large and is in the typical for transition metals range. We find
substantial deviations from Drude behavior in the far-infrared optical
conductivity. These appear because of the unusually low energy of interband
optical transitions. The calculated mass renormalization is found to be rather
sensitive to the exchange-correlation functional used and varies from 10%
(LSDA) to 90% (GGA), using the latest specific heat data. We also find that
dressing of the electrons by spin fluctuations, because of their high energy,
renormalizes the interband optical transition at as high as 4 eV by about 20%.
Although we find no clear indications of strong correlations of the Hubbard
type, strong electron-magnon scattering related to the half metallic band
structure is present and this leads to a nontrivial temperature dependence of
the resistivity and some renormalization of the electron spectra.Comment: 9 Revtex 2 column pages, including 8 postscript figures. Two more
figures are included in the submission that are not embedded in the paper,
representing DOS and bandstructure of the paramagnetic CrO
Orbital character of O 2p unoccupied states near the Fermi level in CrO2
The orbital character, orientation, and magnetic polarization of the O 2
unoccupied states near the Fermi level () in CrO was determined using
polarization-dependent X-ray absorption spectroscopy (XAS) and X-ray magnetic
circular dichroism (XMCD) from high-quality, single-crystal films. A sharp peak
observed just above is excited only by the electric field vector () normal to the tetragonal -axis, characteristic of a narrow band
( 0.7 eV bandwidth) constituted from O 2 orbitals perpendicular to
(O 2) hybridized with Cr 3 states. By comparison
with band-structure and configuration-interaction (CI) cluster calculations our
results support a model of CrO as a half-metallic ferromagnet with large
exchange-splitting energy ( 3.0 eV) and
substantial correlation effects.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. B Rapid
Com
K-ras mutation in the endometrium of tamoxifen-treated breast cancer patients, with a comparison of tamoxifen and toremifene
The putative presence of a mutation in codon 12 of the K-ras gene was investigated in the endometrium of tamoxifen (TAM) and toremifene (TOR)-treated breast cancer patients. DNA was extracted from fresh cytologic samples of the endometrium in 86 TAM and 21 TOR-treated breast cancer patients. Mutations were detected by enriched PCR and an enzyme-linked mini-sequence assay (ELMA). K-ras mutation was found in 35 TAM-treated endometrial samples, and in only one TOR-treated endometrium (P<0.003). In 24 premenopausal patients, K-ras mutation was found in seven (43.8%) of 16 patients with less than 47 months of TAM treatment, while none was found in eight patients with more than 48 months of TAM treatment (P<0.03). In 62 postmenopausal-amenorrheic patients, K-ras mutation was found in three (15.8%) of 19 patients with less than 23 months of TAM treatment, while it was found in 16 (61.5%) of 26 patients with 24–47 months of TAM treatment and nine (52.9%) of 17 patients with more than 48 months of TAM treatment (P=0.002). The presence of K-ras mutation is significantly influenced by the duration of TAM treatment and menstrual status of the patients. TOR may have a lower potential genotoxicity than TAM
Stretching Actin Filaments within Cells Enhances their Affinity for the Myosin II Motor Domain
To test the hypothesis that the myosin II motor domain (S1) preferentially binds to specific subsets of actin filaments in vivo, we expressed GFP-fused S1 with mutations that enhanced its affinity for actin in Dictyostelium cells. Consistent with the hypothesis, the GFP-S1 mutants were localized along specific portions of the cell cortex. Comparison with rhodamine-phalloidin staining in fixed cells demonstrated that the GFP-S1 probes preferentially bound to actin filaments in the rear cortex and cleavage furrows, where actin filaments are stretched by interaction with endogenous myosin II filaments. The GFP-S1 probes were similarly enriched in the cortex stretched passively by traction forces in the absence of myosin II or by external forces using a microcapillary. The preferential binding of GFP-S1 mutants to stretched actin filaments did not depend on cortexillin I or PTEN, two proteins previously implicated in the recruitment of myosin II filaments to stretched cortex. These results suggested that it is the stretching of the actin filaments itself that increases their affinity for the myosin II motor domain. In contrast, the GFP-fused myosin I motor domain did not localize to stretched actin filaments, which suggests different preferences of the motor domains for different structures of actin filaments play a role in distinct intracellular localizations of myosin I and II. We propose a scheme in which the stretching of actin filaments, the preferential binding of myosin II filaments to stretched actin filaments, and myosin II-dependent contraction form a positive feedback loop that contributes to the stabilization of cell polarity and to the responsiveness of the cells to external mechanical stimuli
Cell–cell and cell–matrix dynamics in intraperitoneal cancer metastasis
The peritoneal metastatic route of cancer dissemination is shared by cancers of the ovary and gastrointestinal tract. Once initiated, peritoneal metastasis typically proceeds rapidly in a feed-forward manner. Several factors contribute to this efficient progression. In peritoneal metastasis, cancer cells exfoliate into the peritoneal fluid and spread locally, transported by peritoneal fluid. Inflammatory cytokines released by tumor and immune cells compromise the protective, anti-adhesive mesothelial cell layer that lines the peritoneal cavity, exposing the underlying extracellular matrix to which cancer cells readily attach. The peritoneum is further rendered receptive to metastatic implantation and growth by myofibroblastic cell behaviors also stimulated by inflammatory cytokines. Individual cancer cells suspended in peritoneal fluid can aggregate to form multicellular spheroids. This cellular arrangement imparts resistance to anoikis, apoptosis, and chemotherapeutics. Emerging evidence indicates that compact spheroid formation is preferentially accomplished by cancer cells with high invasive capacity and contractile behaviors. This review focuses on the pathological alterations to the peritoneum and the properties of cancer cells that in combination drive peritoneal metastasis
Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer
Background
Limitless self-renewal is one of the hallmarks of cancer and is attained by telomere maintenance, essentially through telomerase (hTERT) activation. Transcriptional regulation of hTERT is believed to play a major role in telomerase activation in human cancers.
Main body
The dominant interest in telomerase results from its role in cancer. The role of telomeres and telomere maintenance mechanisms is well established as a major driving force in generating chromosomal and genomic instability. Cancer cells have acquired the ability to overcome their fate of senescence via telomere length maintenance mechanisms, mainly by telomerase activation.
hTERT expression is up-regulated in tumors via multiple genetic and epigenetic mechanisms including hTERT amplifications, hTERT structural variants, hTERT promoter mutations and epigenetic modifications through hTERT promoter methylation. Genetic (hTERT promoter mutations) and epigenetic (hTERT promoter methylation and miRNAs) events were shown to have clinical implications in cancers that depend on hTERT activation. Knowing that telomeres are crucial for cellular self-renewal, the mechanisms responsible for telomere maintenance have a crucial role in cancer diseases and might be important oncological biomarkers. Thus, rather than quantifying TERT expression and its correlation with telomerase activation, the discovery and the assessment of the mechanisms responsible for TERT upregulation offers important information that may be used for diagnosis, prognosis, and treatment monitoring in oncology. Furthermore, a better understanding of these mechanisms may promote their translation into effective targeted cancer therapies.
Conclusion
Herein, we reviewed the underlying mechanisms of hTERT regulation, their role in oncogenesis, and the potential clinical applications in telomerase-dependent cancers.info:eu-repo/semantics/publishedVersio
- …