The electronic structure of CrO_2 is critically discussed in terms of the
relation of existing experimental data and well converged LSDA and GGA
calculations of the electronic structure and transport properties of this half
metal magnet, with a particular emphasis on optical properties. We find only
moderate manifestations of many body effects. Renormalization of the density of
states is not large and is in the typical for transition metals range. We find
substantial deviations from Drude behavior in the far-infrared optical
conductivity. These appear because of the unusually low energy of interband
optical transitions. The calculated mass renormalization is found to be rather
sensitive to the exchange-correlation functional used and varies from 10%
(LSDA) to 90% (GGA), using the latest specific heat data. We also find that
dressing of the electrons by spin fluctuations, because of their high energy,
renormalizes the interband optical transition at as high as 4 eV by about 20%.
Although we find no clear indications of strong correlations of the Hubbard
type, strong electron-magnon scattering related to the half metallic band
structure is present and this leads to a nontrivial temperature dependence of
the resistivity and some renormalization of the electron spectra.Comment: 9 Revtex 2 column pages, including 8 postscript figures. Two more
figures are included in the submission that are not embedded in the paper,
representing DOS and bandstructure of the paramagnetic CrO