468 research outputs found

    Distinguishing genuine entangled two-photon-polarization states from independently generated pairs of entangled photons

    Get PDF
    A scheme to distinguish entangled two-photon-polarization states (ETP) from two independent entangled one-photon-polarization states (EOP) is proposed. Using this scheme, the experimental generation of ETP by parametric down-conversion is confirmed through the anti-correlations between three orthogonal two-photon-polarization states. The estimated fraction of ETP among the correlated photon pairs is 37% in the present experimental setup.Comment: 5 pages, 2 figure

    Four-photon correction in two-photon Bell experiments

    Full text link
    Correlated photons produced by spontaneous parametric down-conversion are an essential tool for quantum communication, especially suited for long-distance connections. To have a reasonable count rate after all the losses in the propagation and the filters needed to improve the coherence, it is convenient to increase the intensity of the laser that pumps the non-linear crystal. By doing so, however, the importance of the four-photon component of the down-converted field increases, thus degrading the quality of two-photon interferences. In this paper, we present an easy derivation of this nuisance valid for any form of entanglement generated by down-conversion, followed by a full study of the problem for time-bin entanglement. We find that the visibility of two-photon interferences decreases as V=1-2\rho, where \rho is, in usual situations, the probability per pulse of creating a detectable photon pair. In particular, the decrease of V is independent of the coherence of the four-photon term. Thanks to the fact that \rho can be measured independently of V, the experimental verification of our prediction is provided for two different configuration of filters.Comment: 16 pages, 4 figures; published versio

    Contribution of L-type Ca2+ channels to early afterdepolarizations induced by I-Kr and I-Ks channel suppression in guinea pig ventricular myocytes

    Get PDF
    ArticleJOURNAL OF MEMBRANE BIOLOGY. 222(3): 151-166(2008)journal articl

    Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and inseparability of two-mode Gaussian states

    Full text link
    The strange property of the Einstein-Podolsky-Rosen (EPR) correlation between two remote physical systems is a primitive object on the study of quantum entanglement. In order to understand the entanglement in canonical continuous-variable systems, a pair of the EPR-like uncertainties is an essential tool. Here, we consider a normalized pair of the EPR-like uncertainties and introduce a state-overlap to a classically correlated mixture of coherent states. The separable condition associated with this state-overlap determines the strength of the EPR-like correlation on a coherent-state basis in order that the state is entangled. We show that the coherent-state-based condition is capable of detecting the class of two-mode Gaussian entangled states. We also present an experimental measurement scheme for estimation of the state-overlap by a heterodyne measurement and a photon detection with a feedforward operation.Comment: 9 pages, 5 figures. A part of the materials in Sec. VI B of previous versions was moved into another paper: Journal of Atomic, Molecular, and Optical Physics, 2012, 854693 (2012). http://www.hindawi.com/journals/jamop/2012/854693

    Administration route-dependent vaccine efficiency of murine dendritic cells pulsed with antigens

    Get PDF
     Dendritic cells (DCs) loaded with tumour antigens have been successfully used to induce protective tumour immunity in murine models and human trials. However, it is still unclear which DC administration route elicits a superior therapeutic effect. Herein, we investigated the vaccine efficiency of DC2.4 cells, a murine dendritic cell line, pulsed with ovalbumin (OVA) in the murine E.G7-OVA tumour model after immunization via various routes. After a single vaccination using 1 × 106OVA-pulsed DC2.4 cells, tumour was completely rejected in the intradermally (i.d.; three of four mice), subcutaneously (s.c.; three of four mice), and intraperitoneally (i.p.; one of four mice) immunized groups. Double vaccinations enhanced the anti-tumour effect in all groups except the intravenous (i.v.) group, which failed to achieve complete rejection. The anti-tumour efficacy of each immunization route was correlated with the OVA-specific cytotoxic T lymphocyte (CTL) activity evaluated on day 7 post-vaccination. Furthermore, the accumulation of DC2.4 cells in the regional lymph nodes was detected only in the i.d.-and s.c.-injected groups. These results demonstrate that the administration route of antigen-loaded DCs affects the migration of DCs to lymphoid tissues and the magnitude of antigen-specific CTL response. Furthermore, the immunization route affects vaccine efficiency. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Empirical comparison of high gradient achievement for different metals in DC and pulsed mode

    Full text link
    For the SwissFEL project, an advanced high gradient low emittance gun is under development. Reliable operation with an electric field, preferably above 125 MV/m at a 4 mm gap, in the presence of an UV laser beam, has to be achieved in a diode configuration in order to minimize the emittance dilution due to space charge effects. In the first phase, a DC breakdown test stand was used to test different metals with different preparation methods at voltages up to 100 kV. In addition high gradient stability tests were also carried out over several days in order to prove reliable spark-free operation with a minimum dark current. In the second phase, electrodes with selected materials were installed in the 250 ns FWHM, 500 kV electron gun and tested for high gradient breakdown and for quantum efficiency using an ultra-violet laser.Comment: 25 pages, 13 figures, 5 tables. Follow up from FEL 2008 conference (Geyongju Korea 2008) New Title in JVST A (2010) : Vacuum breakdown limit and quantum efficiency obtained for various technical metals using DC and pulsed voltage source

    Density of States of Disordered Two-Dimensional Crystals with Half-Filled Band

    Full text link
    A diagrammatic method is applied to study the effects of commensurability in two-dimensional disordered crystalline metals by using the particle-hole symmetry with respect to the nesting vector P_0={\pm{\pi}/a, {\pi}/a} for a half-filled electronic band. The density of electronic states (DoS) is shown to have nontrivial quantum corrections due to both nesting and elastic impurity scattering processes, as a result the van Hove singularity is preserved in the center of the band. However, the energy dependence of the DoS is strongly changed. A small offset from the middle of the band gives rise to disappearence of quantum corrections to the DoS .Comment: to be published in Physical Review Letter

    Mapping coherence in measurement via full quantum tomography of a hybrid optical detector

    Full text link
    Quantum states and measurements exhibit wave-like --- continuous, or particle-like --- discrete, character. Hybrid discrete-continuous photonic systems are key to investigating fundamental quantum phenomena, generating superpositions of macroscopic states, and form essential resources for quantum-enhanced applications, e.g. entanglement distillation and quantum computation, as well as highly efficient optical telecommunications. Realizing the full potential of these hybrid systems requires quantum-optical measurements sensitive to complementary observables such as field quadrature amplitude and photon number. However, a thorough understanding of the practical performance of an optical detector interpolating between these two regions is absent. Here, we report the implementation of full quantum detector tomography, enabling the characterization of the simultaneous wave and photon-number sensitivities of quantum-optical detectors. This yields the largest parametrization to-date in quantum tomography experiments, requiring the development of novel theoretical tools. Our results reveal the role of coherence in quantum measurements and demonstrate the tunability of hybrid quantum-optical detectors.Comment: 7 pages, 3 figure

    Pharmacogenetic Modulation of Orexin Neurons Alters Sleep/Wakefulness States in Mice

    Get PDF
    Hypothalamic neurons expressing neuropeptide orexins are critically involved in the control of sleep and wakefulness. Although the activity of orexin neurons is thought to be influenced by various neuronal input as well as humoral factors, the direct consequences of changes in the activity of these neurons in an intact animal are largely unknown. We therefore examined the effects of orexin neuron-specific pharmacogenetic modulation in vivo by a new method called the Designer Receptors Exclusively Activated by Designer Drugs approach (DREADD). Using this system, we successfully activated and suppressed orexin neurons as measured by Fos staining. EEG and EMG recordings suggested that excitation of orexin neurons significantly increased the amount of time spent in wakefulness and decreased both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep times. Inhibition of orexin neurons decreased wakefulness time and increased NREM sleep time. These findings clearly show that changes in the activity of orexin neurons can alter the behavioral state of animals and also validate this novel approach for manipulating neuronal activity in awake, freely-moving animals

    Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils

    Get PDF
    We have generated over 40 GPa pressures, namely, 43 and 44 GPa, at ambient temperature and 2000 K, respectively, using Kawai-type multi-anvil presses (KMAP) with tungsten carbide anvils for the first time. These high-pressure generations were achieved by combining the following pressure-generation techniques: (1) precisely aligned guide block systems, (2) high hardness of tungsten carbide, (3) tapering of second-stage anvil faces, (4) materials with high bulk modulus in a high-pressure cell, and (5) high heating efficiency
    corecore