7 research outputs found

    Early Universe Dynamics in Semi-Classical Loop Quantum Cosmology

    Full text link
    Within the framework of loop quantum cosmology, there exists a semi-classical regime where spacetime may be approximated in terms of a continuous manifold, but where the standard Friedmann equations of classical Einstein gravity receive non-perturbative quantum corrections. An approximate, analytical approach to studying cosmic dynamics in this regime is developed for both spatially flat and positively-curved isotropic universes sourced by a self-interacting scalar field. In the former case, a direct correspondence between the classical and semi-classical field equations can be established together with a scale factor duality that directly relates different expanding and contracting universes. Some examples of non-singular, bouncing cosmologies are presented together with a scaling, power-law solution.Comment: 14 pages, In Press, JCA

    Inflationary scalar spectrum in loop quantum cosmology

    Full text link
    In the context of loop quantum cosmology, we consider an inflationary era driven by a canonical scalar field and occurring in the semiclassical regime, where spacetime is a continuum but quantum gravitational effects are important. The spectral amplitude and index of scalar perturbations on an unperturbed de Sitter background are computed at lowest order in the slow-roll parameters. The scalar spectrum can be blue-tilted and far from scale invariance, and tuning of the quantization ambiguities is necessary for agreement with observations. The results are extended to a generalized quantization scheme including those proposed in the literature. Quantization of the matter field at sub-horizon scales can provide a consistency check of such schemes.Comment: 29 pages, 2 figures. v2: typos corrected, discussion improved and extended, new section added. Conclusions are unchange

    Correspondence between kinematical backreaction and scalar field cosmologies - the `morphon field'

    Get PDF
    Spatially averaged inhomogeneous cosmologies in classical general relativity can be written in the form of effective Friedmann equations with sources that include backreaction terms. In this paper we propose to describe these backreaction terms with the help of a homogeneous scalar field evolving in a potential; we call it the `morphon field'. This new field links classical inhomogeneous cosmologies to scalar field cosmologies, allowing to reinterpret, e.g., quintessence scenarios by routing the physical origin of the scalar field source to inhomogeneities in the Universe. We investigate a one-parameter family of scaling solutions to the backreaction problem. Subcases of these solutions (all without an assumed cosmological constant) include scale-dependent models with Friedmannian kinematics that can mimic the presence of a cosmological constant or a time-dependent cosmological term. We explicitly reconstruct the scalar field potential for the scaling solutions, and discuss those cases that provide a solution to the Dark Energy and coincidence problems. In this approach, Dark Energy emerges from morphon fields, a mechanism that can be understood through the proposed correspondence: the averaged cosmology is characterized by a weak decay (quintessence) or growth (phantom quintessence) of kinematical fluctuations, fed by `curvature energy' that is stored in the averaged 3-Ricci curvature. We find that the late-time trajectories of those models approach attractors that lie in the future of a state that is predicted by observational constraints.Comment: 36 pages and 6 Figures, matches published version in Class.Quant.Gra

    Loop Quantum Cosmology: A Status Report

    Get PDF
    The goal of this article is to provide an overview of the current state of the art in loop quantum cosmology for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general; and, cosmologists who wish to apply loop quantum cosmology to probe modifications in the standard paradigm of the early universe. An effort has been made to streamline the material so that, as described at the end of section I, each of these communities can read only the sections they are most interested in, without a loss of continuity.Comment: 138 pages, 15 figures. Invited Topical Review, To appear in Classical and Quantum Gravity. Typos corrected, clarifications and references adde

    Background Independent Quantum Gravity: A Status Report

    Full text link
    The goal of this article is to present an introduction to loop quantum gravity -a background independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry. Our presentation is pedagogical. Thus, in addition to providing a bird's eye view of the present status of the subject, the article should also serve as a vehicle to enter the field and explore it in detail. To aid non-experts, very little is assumed beyond elements of general relativity, gauge theories and quantum field theory. While the article is essentially self-contained, the emphasis is on communicating the underlying ideas and the significance of results rather than on presenting systematic derivations and detailed proofs. (These can be found in the listed references.) The subject can be approached in different ways. We have chosen one which is deeply rooted in well established physics and also has sufficient mathematical precision to ensure that there are no hidden infinities. In order to keep the article to a reasonable size, and to avoid overwhelming non-experts, we have had to leave out several interesting topics, results and viewpoints; this is meant to be an introduction to the subject rather than an exhaustive review of it.Comment: 125 pages, 5 figures (eps format), the final version published in CQ
    corecore