25 research outputs found

    Effect of hypocapnia on the sensitivity of hyperthermic hyperventilation and the cerebrovascular response in resting heated humans

    Get PDF
    Elevating core temperature at rest causes increases in minute ventilation (V̇e), which lead to reductions in both arterial CO2 partial pressure (hypocapnia) and cerebral blood flow. We tested the hypothesis that in resting heated humans this hypocapnia diminishes the ventilatory sensitivity to rising core temperature but does not explain a large portion of the decrease in cerebral blood flow. Fourteen healthy men were passively heated using hot-water immersion (41°C) combined with a water-perfused suit, which caused esophageal temperature (Tes) to reach 39°C. During heating in two separate trials, end-tidal CO2 partial pressure decreased from the level before heating (39.4 ± 2.0 mmHg) to the end of heating (30.5 ± 6.3 mmHg) (P = 0.005) in the Control trial. This decrease was prevented by breathing CO2-enriched air throughout the heating such that end-tidal CO2 partial pressure did not differ between the beginning (39.8 ± 1.5 mmHg) and end (40.9 ± 2.7 mmHg) of heating (P = 1.00). The sensitivity to rising Tes (i.e., slope of the Tes − V̇E relation) did not differ between the Control and CO2-breathing trials (37.1 ± 43.1 vs. 16.5 ± 11.1 l·min−1·°C−1, P = 0.31). In both trials, middle cerebral artery blood velocity (MCAV) decreased early during heating (all P < 0.01), despite the absence of hyperventilation-induced hypocapnia. CO2 breathing increased MCAV relative to Control at the end of heating (P = 0.005) and explained 36.6% of the heat-induced reduction in MCAV. These results indicate that during passive heating at rest ventilatory sensitivity to rising core temperature is not suppressed by hypocapnia and that most of the decrease in cerebral blood flow occurs independently of hypocapnia

    Body temperature and cold sensation during and following exercise under temperate room conditions in cold‐sensitive young trained females

    Get PDF
    We evaluated cold sensation at rest and in response to exercise‐induced changes in core and skin temperatures in cold‐sensitive exercise trained females. Fifty‐eight trained young females were screened by a questionnaire, selecting cold‐sensitive (Cold‐sensitive, n = 7) and non‐cold‐sensitive (Control, n = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then performed 30‐min of moderate intensity cycling (50% peak oxygen uptake) followed by a 60‐min recovery. Core and mean skin temperatures and cold sensation over the whole‐body and extremities (fingers and toes) were assessed throughout. Resting core temperature was lower in the Cold‐sensitive relative to Control group (36.4 ± 0.3 vs. 36.7 ± 0.2°C). Core temperature increased to similar levels at end‐exercise (~37.2°C) and gradually returned to near preexercise rest levels at the end of recovery (>36.6°C). Whole‐body cold sensation was greater in the Cold‐sensitive relative to Control group during resting at a room temperature of 23.5°C only without a difference in mean skin temperature between groups. In contrast, cold sensation of the extremities was greater in the Cold‐sensitive group prior to, during and following exercise albeit this was not paralleled by differences in mean extremity skin temperature. We show that young trained females who are sensitive to cold exhibit augmented whole‐body cold sensation during rest under temperate ambient conditions. However, this response is diminished during and following exercise. In contrast, cold sensation of extremities is augmented during resting that persists during and following exercise

    Wearing graduated compression stockings augments cutaneous vasodilation but not sweating during exercise in the heat

    Get PDF
    The activation of cutaneous vasodilation and sweating are essential to the regulation of core temperature during exercise in the heat. We assessed the effect of graduated compression induced by wearing stockings on cutaneous vasodilation and sweating during exercise in the heat (30°C). On two separate occasions, nine young males exercised for 45 min or until core temperature reached ~1.5°C above baseline resting while wearing either (1) stockings causing graduated compression (graduate compression stockings, GCS), or (2) loose‐fitting stockings without compression (Control). Forearm vascular conductance was evaluated by forearm blood flow (venous occlusion plethysmography) divided by mean arterial pressure to estimate cutaneous vasodilation. Sweat rate was estimated using the ventilated capsule technique. Core and skin temperatures were measured continuously. Exercise duration was similar between conditions (Control: 42.2 ± 3.6 min vs. GCS: 42.2 ± 3.6 min, P = 1.00). Relative to Control, GCS increased forearm vascular conductance during the late stages (≥30 min) of exercise (e.g., at 40 min, 15.6 ± 5.6 vs. 18.0 ± 6.0 units, P = 0.01). This was paralleled by a greater sensitivity (23.1 ± 9.1 vs. 32.1 ± 15.0 units°C−1, P = 0.043) and peak level (14.1 ± 5.1 vs. 16.3 ± 5.7 units, P = 0.048) of cutaneous vasodilation as evaluated from the relationship between forearm vascular conductance with core temperature. However, the core temperature threshold at which an increase in forearm vascular conductance occurred did not differ between conditions (Control: 36.9 ± 0.2 vs. GCS: 37.0 ± 0.3°C, P = 0.13). In contrast, no effect of GCS on sweating was measured (all P > 0.05). We show that the use of GCS during exercise in the heat enhances cutaneous vasodilation and not sweating

    Respiratory mechanics and cerebral blood flow during heat‐induced hyperventilation and its voluntary suppression in passively heated humans

    Get PDF
    We investigated whether heat‐induced hyperventilation can be voluntarily prevented, and, if so, how this modulates respiratory mechanics and cerebral blood flow in resting heated humans. In two separate trials, 10 healthy men were passively heated using lower body hot‐water immersion and a water‐perfused garment covering their upper body (both 41°C) until esophageal temperature (Tes) reached 39°C or volitional termination. In each trial, participants breathed normally (normal‐breathing) or voluntarily controlled minute ventilation (VE) at a level equivalent to that observed after 5 min of heating (controlled‐breathing). Respiratory gases, middle cerebral artery blood velocity (MCAV), work of breathing, and end‐expiratory and inspiratory lung volumes were measured. During normal‐breathing, VE increased as Tes rose above 38.0 ± 0.3°C, whereas controlled‐breathing diminished the increase in VE (VE at Tes = 38.6°C: 25.6 ± 5.9 and 11.9 ± 1.3 L min−1 during normal‐ and controlled‐breathing, respectively, P < 0.001). During normal‐breathing, end‐tidal CO2 pressure and MCAV decreased with rising Tes, but controlled‐breathing diminished these reductions (at Tes = 38.6°C, 24.7 ± 5.0 vs. 39.5 ± 2.8 mmHg; 44.9 ± 5.9 vs. 60.2 ± 6.3 cm sec−1, both P < 0.001). The work of breathing correlated positively with changes in VE (P < 0.001) and was lower during controlled‐ than normal‐breathing (16.1 ± 12.6 and 59.4 ± 49.5 J min−1, respectively, at heating termination, P = 0.013). End‐expiratory and inspiratory lung volumes did not differ between trials (P = 0.25 and 0.71, respectively). These results suggest that during passive heating at rest, heat‐induced hyperventilation increases the work of breathing without affecting end‐expiratory lung volume, and that voluntary control of breathing can nearly abolish this hyperventilation, thereby diminishing hypocapnia, cerebral hypoperfusion, and increased work of breathing
    corecore