Abstract (ECSS 2014)

Effects of CO₂ on ventilatory and cerebrovascular responses during passive heating in humans

Tsuji, B.¹, Filingeri, D.², Fujii, N.³, Hayashi, K.⁴, Eguchi, T.¹, Kondo, N.⁵, Honda, Y.¹, Nishiyasu, T.¹

¹ Institute of Health and Sports Science, University of Tsukuba, Japan

- ² Loughborough University, UK
- ³ University of Ottawa, Canada
- ⁴ University of Shizuoka, Japan
- ⁵ Kobe University, Japan

Introduction

During passive heating of resting humans, minute ventilation (V_E) changes little as esophageal temperature (T_{es} , an index of core temperature) rises until the temperature reaches about 38°C. Above this threshold, V_E increases by ~30 L/min with respect to 1°C rise in T_{es} and results in a decrease in arterial CO₂ pressure (PaCO₂) (Tsuji et al. 2012). In nornothermic condition, generally, change in PaCO₂ can affect both ventilatory and cerebrovascular responses such that the decrease in PaCO₂ suppresses V_E via central chemoreceptors, and also reduces cerebral blood flow by cerebral vasoconstriction. However, the effect of reduced PaCO₂ on ventilatory and cerebrovascular responses during hyperthermia at rest is not well understood. We previously found that, during prolonged moderate exercise in the heat, restoration of PaCO₂ to the eucapnic level augmented the ventilatory sensitivity to rising T_{es} (slope of the T_{es} - V_E relation) by threefold (Hayashi et al. 2011). The present study thus examined the effect of PaCO₂ on the ventilatory sensitivity and cerebrovascular response to rinsing T_{es} at rest.

Methods

Fourteen healthy male were passively heated using hot-water immersion (41°C) and a water-perfused suit until T_{es} reached 39°C or the subjects could no longer tolerate the heating. During the heating on two separate occasions, subjects breathed room air (Control trial) or CO₂-enriched air (a mixture of room air and 100% CO₂) to prevent a reduction in P_{ETCO2} (an index of PaCO₂) (CO₂ trial).

Results and Discussion

 T_{es} threshold for increase in V_E was seen at both trials (Control vs. CO_2 : 38.4 ± 0.4 vs. $38.1\pm0.6^{\circ}$ C, P = 0.13), and above the thresholds V_E increased linearly with rising T_{es} . In Control trial P_{ETCO2} declined gradually with rising T_{es} above the threshold, whereas it in CO_2 trial remained at eucapnic level. Ventilatory sensitivity to increasing T_{es} did not differ between Control and CO_2 trials (38.1 ± 43.1 vs. 16.5 ± 11.1 L/min/°C, P = 0.15). These suggest that ventilatory response with rising core temperature at rest is unaffected by a decrease in PaCO₂. Middle cerebral artery mean blood velocity (MCAV_{mean}) decreased gradually with rising T_{es} in Control trial (59.9 ± 8.4 and 49.9 ± 9.7 sm/s at T_{es} 36.8 and 38.8° C, respectively), and the reduced MCAV_{mean} was restored by about 40% in CO₂ trial (53.8 ± 5.6 cm/s at T_{es} 38.8° C), but inhaling CO₂ had no significant effect on MCAV_{mean}. Furthermore, the restoration of MCAV_{mean} by CO₂ inhalation was similar among each T_{es} revel of 37.2, 37.6, 38.0, 38.4 and 38.8° C. These suggest that the decrease in PaCO₂ accounts for the reduction in MCAV_{mean} by 40% at T_{es} range of $37-39^{\circ}$ C during passive heating at rest.

References

Tsuji B, Honda Y, Fujii N, Kondo N, Nishiyasu T (2012). J Appl Physiol 113, 1388-1397. Hayashi K, Honda Y, Miyakawa N, Fujii N, Ichinose M, Koga S, Kondo N, Nishiyasu T (2011). J Appl Physiol 110, 1334-41.