1,647 research outputs found

    Monte Carlo simulation method for Laughlin-like states in a disk geometry

    Get PDF
    We discuss an alternative accurate Monte Carlo method to calculate the ground-state energy and related quantities for Laughlin states of the fractional quantum Hall effect in a disk geometry. This alternative approach allows us to obtain accurate bulk regime (thermodynamic limit) values for various quantities from Monte Carlo simulations with a small number of particles (much smaller than that needed with standard Monte Carlo approaches).Comment: 13 pages, 6 figures, 2 table

    Field-induced breakdown of the quantum Hall effect

    Full text link
    A numerical analysis is made of the breakdown of the quantum Hall effect caused by the Hall electric field in competition with disorder. It turns out that in the regime of dense impurities, in particular, the number of localized states decreases exponentially with the Hall field, with its dependence on the magnetic and electric field summarized in a simple scaling law. The physical picture underlying the scaling law is clarified. This intra-subband process, the competition of the Hall field with disorder, leads to critical breakdown fields of magnitude of a few hundred V/cm, consistent with observations, and accounts for their magnetic-field dependence \propto B^{3/2} observed experimentally. Some testable consequences of the scaling law are discussed.Comment: 7 pages, Revtex, 3 figures, to appear in Phys. Rev.

    Thermodynamic Study of Excitations in a 3D Spin Liquid

    Full text link
    In order to characterize thermal excitations in a frustrated spin liquid, we have examined the magnetothermodynamics of a model geometrically frustrated magnet. Our data demonstrate a crossover in the nature of the spin excitations between the spin liquid phase and the high-temperature paramagnetic state. The temperature dependence of both the specific heat and magnetization in the spin liquid phase can be fit within a simple model which assumes that the spin excitations have a gapped quadratic dispersion relation.Comment: 5 figure

    Rational sequences for the conductance in quantum wires from affine Toda field theories

    Get PDF
    We analyse the expression for the conductance of a quantum wire which is decribed by an integrable quantum field theory. In the high temperature regime we derive a simple formula for the filling fraction. This expression involves only the inverse of a matrix which contains the information of the asymptotic phases of the scattering matrix and the solutions of the constant thermodynamic Bethe ansatz equations. Evaluating these expressions for minimal affine Toda field theory we recover several sequences of rational numbers, which are multiples of the famous Jain sequence for the filling fraction occurring in the context of the fractional quantum Hall effect. For instance we obtain ν=4m/(2m+1)\nu= 4 m/(2m +1) for A4m−1A_{4m-1}-minimal affine Toda field theory. The matrices involved have in general non-rational entries and are not part of previous classification schemes based on integral lattices.Comment: 9 pages Latex, version to appear in Journal of Physics

    Strong, Ultra-narrow Peaks of Longitudinal and Hall Resistances in the Regime of Breakdown of the Quantum Hall Effect

    Full text link
    With unusually slow and high-resolution sweeps of magnetic field, strong, ultra-narrow (width down to 100μT100 {\rm \mu T}) resistance peaks are observed in the regime of breakdown of the quantum Hall effect. The peaks are dependent on the directions and even the history of magnetic field sweeps, indicating the involvement of a very slow physical process. Such a process and the sharp peaks are, however, not predicted by existing theories. We also find a clear connection between the resistance peaks and nuclear spin polarization.Comment: 5 pages with 3 figures. To appear in PR

    Josephson Plasma Resonance as a Structural Probe of Vortex Liquid

    Full text link
    Recent developments of the Josephson plasma resonance and transport c-axis measurements in layered high Tc_{c} superconductors allow to probe Josephson coupling in a wide range of the vortex phase diagram. We derive a relation between the field dependent Josephson coupling energy and the density correlation function of the vortex liquid. This relation provides a unique opportunity to extract the density correlation function of pancake vortices from the dependence of the plasma resonance on the abab-component of the magnetic field at a fixed cc-axis component.Comment: 4 pages, 1 fugure, accepted to Phys. Rev. Let

    High Magnetic Field Microwave Conductivity of 2D Electrons in an Array of Antidots

    Full text link
    We measure the high magnetic field (BB) microwave conductivity, Reσxx\sigma_{xx}, of a high mobility 2D electron system containing an antidot array. Reσxx\sigma_{xx} vs frequency (ff) increases strongly in the regime of the fractional quantum Hall effect series, with Landau filling 1/3<ν<2/31/3<\nu<2/3. At microwave ff, Reσxx\sigma_{xx} vs BB exhibits a broad peak centered around ν=1/2\nu=1/2. On the peak, the 10 GHz Reσxx\sigma_{xx} can exceed its dc-limit value by a factor of 5. This enhanced microwave conductivity is unobservable for temperature T≳0.5T \gtrsim 0.5 K, and grows more pronounced as TT is decreased. The effect may be due to excitations supported by the antidot edges, but different from the well-known edge magnetoplasmons.Comment: 4 pages, 3 figures, revtex

    Transverse optical plasmons in layered superconductors

    Full text link
    We discuss the possible existance of transverse optical plasma modes in superlattices consisting of Josephson coupled superconducting layers. These modes appear as resonances in the current-current correlation function, as opposed to the usual plasmons which are poles in the density-density channel. We consider both bilayer superlattices, and single layer lattices with a spread of interlayer Josephson couplings. We show that our model is in quantitative agreement with the recent experimental observation by a number of groups of a peak at the Josephson plasma frequency in the optical conductivity of La1.85_{1.85}Sr0.15_{0.15}CuO4_4Comment: Proceedings of LT21, in press, 4 pages, Latex with LTpaper.sty and epsfig.sty, 2 postscript figure
    • …
    corecore