122 research outputs found

    Synthesis of Ag3PO4 using Hydrophylic Polymer and Their Photocatalytic Activities under Visible Light Irradiation

    Get PDF
    The highly active Ag3PO4 photocatalysts were successfully synthesized using the hydrophylic polymer of PVA (polyvinyl alcohol), PEG (polyethylene glycol) and PVP (polyvinyl pyrrolidone). The products were characterized using X-ray diffraction (XRD), Diffuse reflection spectroscopy (DRS), Field emission scanning electron microscope (FE-SEM), Brunauer–Emmett–Teller (BET) specific surface area, and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities were evaluated using decomposition of Rhodamine B (RhB) under visible light irradiation. The results showed that the PVA, PEG, and PVP increased the specific surface area and enhanced the photocatalytic activity of Ag3PO4. The highest photocatalytic activity could be observed in Ag3PO4 synthesized with PVA, mainly due to an increase in electron excitation induced by PVA chemically adsorbed on the surface.

    Visible Light Photocatalytic Properties of Ta and N Codoped SrTiO 3 Nanoparticles

    Get PDF
    Ta and N co-doped SrTiO 3 was synthesized by microwave-assisted solvothermal reaction using SrCl 2 ·6H 2 O, Ti(OC 3 H 7 ) 4 , TaCl 5 , and HMT (hexamethylenetetramine) in KOH and oleic acid mixed solutions. The products were characterized by XRD, TG-DTA, BET surface area measurement, TEM, EDX, DRS, PL-Spectra, and XPS. The nanoparticles of perovskite-type SrTi 1−x Ta x O 3−y N y (x = 0 − 0.1) were successfully synthesized. The photocatalytic activity of SrTiO 3 for DeNO x ability in the visible light region could be improved by the codoping of Ta 5+ and N 3− . The excellent visible light photocatalytic activity of this substance may be due to the generation of a new band gap by doping nitrogen that enables the absorption of visible light as well as a decrease in the incidence of the lattice defects, which acts as a recombination center of photo-induced electrons and holes by codoping with Ta 5+

    Recent Advances in Visible-Light Driven Photocatalysis

    Get PDF
    Semiconductor photocatalysis has been considered a potentially promising approach for renewable energy and environmental remediation with abundant solar light. However, the currently available semiconductor materials are generally limited by either the harvesting of solar energy or insufficient charge separation ability. To overcome the serious drawbacks of narrow light-response range and low efficiency in most photocatalysts, many strategies have been developed in the past decades. This article reviews the recent advancements of visible-light-driven photocatalysts and attempts to provide a comprehensive update of some strategies to improve the efficiency, such as doping, coupling with graphene, precipitating with metal particles, crystal growth design, and heterostructuring. A brief introduction to photocatalysts is given first, followed by an explanation of the basic rules and mechanisms of photocatalysts. This chapter focuses on recent progress in exploring new strategies to design TiO2-based photocatalysts that aim to extend the light absorption of TiO2 from UV wavelengths into the visible region. Subsequently, some strategies are also used to endow visible-light-driven Ag3PO4 with high activity in photocatalytic reactions. Next, a novel approach, using long afterglow phosphor, has been used to associate a fluorescence-emitting support to continue the photocatalytic reaction after turning off the light. The last section proposes some challenges to design high efficiency of photocatalytic systems

    Synthesis of Ag3PO4 using Hydrophylic Polymer and Their Photocatalytic Activities under Visible Light Irradiation

    Get PDF

    Persistent deNOx Ability of CaAl2O4:(Eu, Nd)/TiO2-xNy Luminescent Photocatalyst

    Get PDF
    The properties of the dusty tori in active galactic nuclei (AGNs) have been investigated in detail, mainly focusing on the geometry and components; however, the kinematics of the torus is still not clear. The narrow iron Kα\alpha line at 6.4 keV is thought to be produced by the X-ray reflection from the torus. Thus, the velocity-resolved reverberation mapping of it is able to constrain the kinematics of the torus. Such effort is limited by the spectral resolution of current CCD detectors and should be possible with the microcalorimeter on the next generation X-ray satellite. In this paper, we first construct the response functions of the torus under a uniform inflow, a Keplerian rotation, and a uniform outflow. Then the energy-dependent light curve of the narrow iron Kα\alpha line is simulated according to the performance of the X-ray Integral Field Unit in Athena. Finally, the energy-dependent cross-correlation function is calculated to reveal the kinematic signal. According to our results, one hundred observations with 5 ks exposure of each are sufficient to distinguish the above three velocity fields. Although the real geometry and velocity field of the torus could be more complex than we assumed, the present result proves the feasibility of the velocity-resolved reverberation mapping of the narrow iron Kα\alpha line. The combination of the dynamics of the torus with those of the broad line region and the host galaxy is instructive for the understanding of the feeding and feedback process of AGNs.Comment: 6 pages, 5 figures, ApJ Letters accepte

    Synthesis and Characterization of ZnO Nanorods and Nanodisks from Zinc Chloride Aqueous Solution

    Get PDF
    ZnO nanorods and nanodisks were synthesized by solution process using zinc chloride as starting material. The morphology of ZnO crystal changed greatly depending on the concentrations of Zn2+ion and ethylene glycohol (EG) additive in the solution. The effect of thermal treatment on the morphology was investigated. Photocatalytic activities of plate-like Zn5(OH)8Cl2 · H2O and rod-like ZnO were characterized. About 18% of 1 ppm NO could be continuously removed by ZnO particles under UV light irradiation
    corecore